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Abstract
Objectives: This study aimed to explore the potential mechanisms of 
TMF (5,7,3’,4’-tetramethoxyflavone) in treating osteoarthritis (OA) using network 
pharmacology and molecular docking. Materials and Methods: Databases including 
SwissTargetPrediction, BATMAN-TCM, PharmMapper, TargetNet, SuperPred, and SEA 
were utilized to screen the targets of TMF. “OA” was used as the disease keyword to 
predict OA-related genes through GeneCards, Therapeutic Target Database, PharmGKB, 
Online Mendelian Inheritance in Man, and Comparative Toxicogenomics Database. The 
Venn diagram was employed to identify the intersection of predicted targets between TMF 
and OA as potential targets for TMF in treating OA. The intersection targets were input into 
the STRING 12.0 online database to construct a protein–protein interaction (PPI) network 
and identify core targets. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the 
Metascape V3.5 online database platform. Finally, molecular docking between TMF and 
core targets was conducted using AutoDockTools 1.5.6. Results: A total of 228 intersection 
targets for TMF treating OA were obtained, and PPI network analysis identified 5 core 
targets: STAT3, SRC, CTNNB1, EGFR, and AKT1. GO enrichment analysis yielded 2736 
results, while KEGG analysis identified 203 pathways. Most elated GO and KEGG items 
of TMF in treating OA may include hormonal responses, antiviral and anticancer effects, 
anti-inflammation, phosphorus metabolism, phosphate metabolism, nitrogen compound 
responses, cancer-related pathways, PI3K-Akt signaling pathway, and MAPK signaling 
pathway. Molecular docking revealed good binding affinities between TMF and all core 
targets except STAT3. Conclusion: TMF might act on multiple targets and activate diverse 
pathways to intervene in OA, revealing the molecular processes involved in TMF treatment 
of OA.

Keywords: 5,7,3’,4’‑tetramethoxyflavone, Molecular docking, Network pharmacology, 
Osteoarthritis

and clinical applications, TMF presents a promising candidate 
for drug development.

Osteoarthritis (OA) is a chronic degenerative joint disease 
characterized by the destruction of joint cartilage, often leading 
to joint pain and functional impairment. Patients commonly 
experience clinical symptoms such as joint stiffness, swelling, 
deformity, and restricted movement [7]. Surveys indicate a 
46.3% incidence rate of OA among the middle-aged and elderly 
population in China, with knee OA prevalence reaching as high as 

Introduction

Murraya exotica L. belongs to the Rutaceae family and is 
widely used for rheumatoid arthritis, anti-inflammatory 

and antimicrobial purposes, pain relief, reduction of body 
swelling, and anticancer and antidiarrheal effects [1,2]. 
5,7,3’,4’-tetramethoxyflavone (TMF), as a flavonoid 
compound, is one of the major components found in the leaves 
of Murraya exotica L. [3]. TMF’s anti-inflammatory and 
analgesic effects stem from its ability to inhibit endoplasmic 
reticulum stress-induced chondrocyte apoptosis, significantly 
downregulating the production of nitric oxide (NO) and 
interleukin-6 (IL-6) [4-6]. With widespread cultivation, good 
quality, high yield, and numerous pharmacological properties 
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15.6% [8]. However, to date, the treatment outcomes for OA have 
not been notably effective. According to the 2022 Annual Review 
of OA, issues persist regarding the need for enhanced evidence 
in OA treatment, the lack of efficacy of most intra-articular or 
acupuncture therapies, the limited benefits of oral medications, 
and the absence of a particularly superior treatment [9]. Thus, 
research on OA holds crucial significance for human well-being.

Studies have shown significant effectiveness of TMF 
in treating OA [10,11]. However, the pathogenesis of OA 
remains unclear, and there is still a lack of effective drugs 
and methods to alleviate pain in the middle-aged and elderly 
populations, thereby reducing the occurrence of disabilities. 
Hence, investigating the mechanism of action for OA becomes 
particularly important. Network pharmacology, integrating 
pharmacology, systems biology, and computational analysis 
techniques, elucidates the connections between ingredients and 
disease targets. By analyzing targets related to the components 
and diseases, conducting enrichment analysis, and identifying 
pathways and biological processes (BPs) for traditional 
Chinese medicine in treating diseases, network pharmacology 
aids in understanding the mechanism of action for traditional 
medicine [12]. As shown in Figure 1, this study employs 
network pharmacology combined with molecular docking to 
explore the mechanism of TMF in treating OA, providing a 
theoretical foundation for subsequent basic research.

Materials and methods
Acquisition of target points for TMF

Retrieve the canonical SMILES, two-dimensional 
structure, and three-dimensional (3D) structure of TMF 

from the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/). Use “5,7,3',4'-tetramethoxyflavone” as a search term 
or input TMF’s SMILES to obtain TMF’s target points from 
the following databases: (1) SwissTargetPrediction (http://
swisstargetprediction.ch/), (2) Bioinformatics Analysis 
Tool for Molecular Mechanism of Traditional Chinese 
Medicine (BATMAN-TCM, http://bionet.ncpsb.org/batman-
tcm/), (3) PharmMapper (http://lilab-ecust.cn/pharmmapper/
index.html), (4) TargetNet (http://targetnet.scbdd.com/), (5) 
SuperPred (https://prediction.charite.de/index.php), and (6) 
Similarity Ensemble Approach (SEA, https://sea.bkslab.org/). 
For standardized final target selection, utilize the UniProt 
protein database (https://www.uniprot.org), limit to “Human,” 
convert the target points into standardized targets, and merge 
and deduplicate all standardized protein targets to obtain the 
final target points for TMF.

Retrieval of osteoarthritis-related targets
Using “OA” as the disease search term, OA-related 

targets were obtained from the following databases: (1) 
GeneCards (https://www.genecards.org/), (2) Therapeutic 
Target Database (TTD, https://db.idrblab.net/ttd/), (3) 
PharmGKB (https://www.pharmgkb.org/), (4) Online 
Mendelian Inheritance in Man (OMIM, https://www.omim.
org/), and (5) Comparative Toxicogenomics Database (CTD, 
https://ctdbase.org/). Targets with relevance scores >10 in 
GeneCards and CTD databases were selected. All targets 
from the above databases were collated, standardized via the 
UniProt protein database, and merged to remove duplicates, 
resulting in the final action targets for OA. Simultaneously, 
in the Gene Expression Omnibus (GEO, https://www.ncbi.

Figure 1: The flowchart of the entire investigation. OA: Osteoarthritis, GO: Gene Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes. PPI: Protein–protein 
interaction
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nlm.nih.gov/gds/) database, under “Expression profiling by 
array,” OA-related targets were obtained using the GEO2R 
algorithm. The selection criteria were P < 0.05 and |log2FC|>2 
for targets, followed by generating a volcano plot using the 
bioinformatics platform (http://www.bioinformatics.com.cn/).

Intersection targets of TMF and osteoarthritis
Through the Draw Venn Diagram online platform 

(http:/ /bioinformatics.psb.ugent.be/webtools/venn/) , 
intersection targets between TMF and OA were obtained. 

Construction of protein–protein interaction (PPI) 
Network and Selection of Core Targets 

The STRING12.0 online database (https://cn.string-db.
org/) was used to construct the PPI network. “Multiple 
Proteins” were selected, and the intersection targets were 
inputted. Under "Organism," “Homo sapiens” was chosen, 
and the “minimum required interaction score” was set 
to > highest confidence (0.900). Subsequently, Cytoscape 
3.7.1 software (https://cytoscape.org/) was utilized for visual 
analysis of the PPI network. NetworkAnalyzer in Cytoscape 
3.7.1 was employed to calculate the degree values in the 
PPI network, considering targets with values higher than the 
central value as core targets.

Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes analysis

In the Metascape V3.5 database platform (https://www.
metascape.org), the intersected gene targets were inputted as 
species “H. sapiens.” Custom Analysis was performed for 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, Gene Ontology (GO) molecular function (MF), GO 
cellular component (CC), and GO BP. The top 30 ranked 
GO terms and KEGG pathways with a threshold of P < 0.05 
were selected and visualized through bubble plots using the 
bioinformatics online platform. KEGG pathway analysis 
results were organized, and a KEGG bubble diagram was 
generated swiftly using the enrichment analysis circle plot 
tool in the SangerBox biomedical data analysis toolbox (http://
sangerbox.com/tool.html).

Construction of protein‑GO‑KEGG network
Cytoscape 3.7.1 software was utilized to construct the 

protein-GO-KEGG network. The top 10 entries of KEGG 
and GO with the most significant P values were selected 
by Metascape, and their related proteins were collected into 
Excel files. These files were imported into Cytoscape 3.7.1 
for visualization and adjustment to represent the results 
effectively.

Molecular docking
Molecular docking enables a more visual understanding 

of the binding patterns and interactions between protein 
macromolecules and small-molecule compounds. TMF 
underwent molecular docking with the top five ranked core 
targets. OpenBabel 2.4.1 (https://openbabel.org/) software 
was used to convert the 3D structures downloaded from 
the PubChem database in SDF format to mol2 format for 
further use. Spatial structures of target proteins were obtained 
from the PDB database (https://www.rcsb.org/), selecting 
“Homo sapiens” as the species, aiming for lower resolution 

and more recent structures whenever possible. In addition, 
structures with longer chains and lower resolution from the 
UniProt database’s “Structure” section were selected. PyMOL 
software (https://pymol.org/2/) was employed to remove all 
water molecules and original ligands from the macromolecular 
spatial structures, saving them in PDB format. Furthermore, 
AutoDockTools (Vina 1.5.6, http://autodock.scripps.edu/) was 
used to convert the small-molecule ligands and processed 
target protein receptors into PDBQT file format. GridBox 
enclosed the protein macromolecules, defining the docking 
area, and the “Genetic Algorithm” was selected for the 
subsequent molecular docking. Finally, PyMOL software was 
utilized again for visual analysis of the docking results.

Results
Potential action targets of TMF in treating osteoarthritis

All protein targets of TMF were sourced from six 
open-source databases: Swiss, BATMAN-TCM, PharmMapper, 
TargetNet, SuperPred, and SEA. After eliminating duplicate 
targets, a total of 371 relevant TMF targets were obtained, 
as shown in Figure 2a. OA-related targets were derived from 
five open-source databases: CTD, TTD, OMIM, GeneCards, 
and PharmGKB, with quantities of 6544, 33, 30, 47, and 
4, respectively. After removing duplicate targets, a total of 
6103 targets were obtained, as illustrated in Figure 2b. From 
the GEO database, a total of 14738 OA-related targets were 
acquired, consisting of 1366 upregulated genes and 1497 
downregulated genes, visualized in the form of a volcano 
plot, as depicted in Figure 2c. Ultimately, 228 intersection 
targets between TMF and OA were collected, as illustrated in 
Figure 2d.

Construction of protein–protein interaction and 
selection of core targets

The intersection targets of TMF and OA were inputted 
into the STRING online platform with an interaction score set 
at 0.9 and free nodes hidden. This process resulted in a PPI 
network graph displaying 228 nodes and 619 edges, indicating 
the interactions among protein targets. Larger and darker 
nodes in the PPI network represent more critical protein 
targets. In Figure 3, the top five targets based on degree values 
are STAT3 (degree value = 31), SRC (degree value = 30), 
CTNNB1 (degree value = 27), EGFR (degree value = 27), 
and AKT1 (degree value = 26). Subsequently, STAT3, SRC, 
CTNNB1, EGFR, and AKT1 were identified as pivotal targets 
for TMF in treating OA and were subjected to molecular 
docking with TMF.

Gene Ontology enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes pathway analysis

The intersection targets underwent GO analysis using the 
Metascape V3.5 database platform, resulting in three sets: BP, 
MF, and CC. Upon filtering the results with P < 0.05, 2386, 
225, and 125 results were respectively obtained, totaling 2736 
GO analysis results. The top 10 entries from each category 
were visualized on the bioinformatics platform, forming 
30 entries, as depicted in Figure 4a. The top 10 of BP were 
hormone response, cellular response to nitrogen compounds, 
positive regulation of phosphate metabolic process, positive 

D
ow

nloaded from
 http://journals.lw

w
.com

/tcm
j by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
4/O

A
V

pD
D

a8K
K

G
K

V
0Y

m
y+

78=
 on 01/12/2025



Chen, et al. / Tzu Chi Medical Journal 2025; 37(1): 99‑108

102 

regulation of phosphate-containing compound metabolic 
process, cellular response to organic nitrogen compounds, 
positive regulation of phosphorylation, phosphorylation, 
inflammatory response, positive regulation of protein 
phosphorylation, and positive regulation of cell migration. 
The top 10 of CC were lipid raft, membrane microdomain, 
cyclin-dependent protein kinase holoenzyme complex, lateral 
side of membrane, protein kinase complex, serine/threonine 
protein kinase complex, transferase complex, perinuclear 
region of cytoplasm, transcription regulation complex, and 
vesicle lumen. The top 10 of MF were kinase activity, protein 
kinase activity, transferase activity-alcohol groupas acceptor, 
kinase binding, protein kinase binding, nuclearreceptor activity, 
ligand-activated transcription factor activity, transcription 
factor binding, protein serine/threonine kinaseactivity, and 
protein serine kinase activity.

In addition, KEGG pathway analysis was also performed 
on the intersection targets using Metascape V 3.5, resulting 
in 203 outcomes after filtering (P < 0.05). The top 30 
entries were visualized on the bioinformatics platform, and 
the results are shown in Figure 4b, revealing pathways such 
as cancer pathways, PI3K-Akt signaling pathway, MAPK 
signaling pathway, human cytomegalovirus infection, lipid 
and atherosclerosis, human T-cell leukemia virus 1 infection, 
Alzheimer’s disease, hepatitis B, human papillomavirus 
infection, Kaposi sarcoma-associated herpesvirus infection, 
EB virus infection, and chemical carcinogenesis-reactive 

oxygen species. This indicates that TMF’s anti-inflammatory, 
anticancer, and antiviral properties are important targets 
or pathways in treating OA. The top 20 pathways based on 
P values were further used to generate a KEGG circle diagram 
in the SangerBox biomedical data analysis tool, providing 
a more intuitive view of pathway proportions and their 
association with multiple genes in Figure 4c.

Construction of protein GO KEGG network
As depicted in Figure 5, the protein-GO-KEGG network 

graph involves a total of 241 nodes and 1631 edges. Among 
them, the intersection genes between GO and KEGG pathways 
amount to 196, represented by diamond shapes. V-shaped 
nodes indicate KEGG signaling pathways, and triangular nodes 
signify GO enrichment results, encompassing BP, CC, and 
MF. Connections between nodes represent a certain level of 
association, where larger nodes denote stronger correlations. 
This graph illustrates that in treating OA, TMF acts on multiple 
targets, resulting in various biological effects and multiple 
mechanisms. The top 10 proteins based on degree value among 
the intersection genes are AKT1, MAPK1, IKBKB, PIK3CA, 
JAK2, SRC, CCND1, EGFR, PRKACA, and GSK3B. Notably, 
AKT1, SRC, and EGFR align with the core targets previously 
identified in the PPI network, suggesting that these proteins 
merit focused attention for further investigation.

Figure 2: Targets of TMF or/and osteoarthritis (OA). (a) TMF targets in six open-source databases; (b) Targets of OA in five open-source databases; (c) Volcano diagram 
of targets of OA; (d) The intersection of TMF and OA
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Molecular docking
Lower binding energies are generally considered indicative 

of better binding activity between large and small molecules. 
Binding energies below −4.25 kcal/moL suggest a certain level 
of affinity between the large and small molecules, while those 
below −5 kcal/moL indicate relatively stronger affinity [13,14]. 
We performed molecular docking between TMF and the top 
five high-degree targets (STAT3, SRC, CTNNB1, EGFR, 
and AKT1) in the protein interaction network. Most targets 
exhibited notably strong binding energies: −4.9 kcal/mol 
for STAT3, −5.18 kcal/moL for SRC, −7.24 kcal/moL for 
CTNNB1, −5.13 kcal/moL for EGFR, and − 5.13 kcal/moL 
for AKT1, as illustrated in Figure 6. Specific amino acid 
residues of these proteins, such as THR 31and ASN 26 of 
STAT3, CYS 280 of SRC, LUE 11, VAL 12 and GLN 13 of 
CTNNB1, GLN 791 and MET 793 of EGFR, and ARG 25, 
LYS 14, ARG 23, ILE 19 and TYR 18 of AKT1, formed tight 
hydrogen bonds with TMF.

Discussion
OA is a joint-related disease initially characterized by 

metabolic disturbances in joint tissues, leading to molecular 
disruptions. This eventually results in physiological 
disruptions marked by features such as cartilage degeneration, 

joint inflammation, bone remodeling, and loss of normal joint 
function. The most prominent aspect of cartilage degeneration 
is the loss of matrix components, including type II 
collagen, aggrecan, and matrix-degrading enzymes such as 
metalloproteinases [15]. Given TMF's diverse biological 
properties encompassing anti-inflammatory, anticancer, and 
antiviral characteristics, we employed bioinformatics and 
systems pharmacology to study TMF’s potential role and 
mechanism in OA. This exploration holds the promise of 
significantly improving the survival rates of OA patients, 
sparing them from pain. Numerous therapeutic targets 
associated with OA have been reported in multiple studies, 
such as the Hippo pathway, IL-6 receptor antagonism, WNT 
signaling, miR-146a-5p, controlled release of corticosteroids, 
TRPV2 protein, TGF-β/TAK1-FoxO1 signaling pathway, 
PI3K/Akt signaling pathway, and IL-1β inhibitors, among 
others [16-24]. The variation in methodologies results in 
different involved targets and molecular mechanisms.

In our research, we identified 228 potential protein 
targets for TMF therapy in OA through intersection analysis 
and acquired five core targets (STAT3, SRC, CTNNB1, 
EGFR, and AKT1). Enrichment analyses unveiled 2736 
entries in GO analysis and 203 entries in KEGG analysis. 
These results indicated TMF’s involvement in anticancer, 

Figure 3: Protein–protein interaction network graph of intersection genes
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antiviral, anti-inflammatory responses, hormone reactions, 
cell apoptosis, PI3K-Akt, and MAPK signaling pathways for 
treating OA. In addition, molecular docking exhibited that 
TMF displayed binding activity with only the STAT3 target 
in OA, albeit at a moderate level, while most other target 
proteins exhibited favorable binding capabilities. Therefore, 
research suggests a significant promise for TMF in treating 
OA. Within the PPI network derived from our study, the 228 
shared targets of TMF and OA yielded 228 nodes and 619 
edges. Furthermore, we conducted molecular docking between 
TMF and the top five protein targets (STAT3, SRC, CTNNB1, 
EGFR, and AKT1) in the PPI network, revealing CTNNB1 
to exhibit the lowest binding energy at −7.24 kcal/moL. 
β-catenin, a multifunctional protein, plays a vital role in tissue 
cell organization and maintenance. As an effector of WNT 
signaling pathway, it regulates cell proliferation and gene 
expression during development. In addition, β-catenin is a 
component of cell adhesion complex, regulating cell sorting 
and tissue [25]. As a key gene in the Wnt/β-catenin pathway, 
CTNNB1 has a significant impact on chondrogenesis and 
mature cartilage formation and can be targeted for treating OA 
by regulating the Wnt/β-catenin signaling pathway [26-28]. 
Chondrocyte apoptosis serves as a primary cause of cartilage 
degeneration in OA. AKT1, a member of the serine/threonine 
protein kinase family, can control cartilage calcification in 
OA, demonstrating potential therapeutic effects [29-31]. 

Autophagy, a highly conserved mechanism maintaining bodily 
equilibrium, can be relieved to aid OA’s future development. 
AKT1, as a related gene in the autophagy pathway, can reduce 
NO production, enhance the expression of health markers, 
and lower OA indicators [32]. In addition, targeting AKT1 
and modulating the PI3K/AKT/mTOR signaling pathway 
can activate chondrocyte autophagy, consequently reducing 
osteoarthritic pain [33,34]. STAT3, a member of the STAT 
family, acts as a transcription factor under various pathological 
conditions [35]. Evidence suggests that the RORα plays 
a crucial role in cartilage development and OA pathology. 
Blocking RORα elevates the expression of cartilage matrix 
components such as type II collagen and aggrecan while 
significantly downregulating the IL-6/STAT3 pathway, 
reversing cartilage damage [36-38]. STAT3 is associated 
with both IL-6-induced cartilage damage and IL-1β-induced 
inflammatory reactions. These findings illustrate STAT3’s role 
as a major signaling pathway involved in cartilage injury, 
where IL-6 induces cartilage degradation through the STAT3 
pathway, while inhibiting STAT3/NF-κB signaling alleviates 
IL-1β-induced inflammation, relieves cartilage degeneration, 
and promotes local autophagy, exhibiting its promising 
therapeutic effects for OA [39,40]. These results further 
support TMF as an effective drug target for treating OA.

According to the GO and KEGG enrichment analysis, 
TMF treatment for OA is closely associated with antiviral, 

Figure 4: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of intersection genes between tetramethoxyflavone and osteoarthritis. (a) 
GO analysis; (b) KEGG analysis; (c) KEGG circle diagram
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anticancer, anti-inflammatory, hormone response, phosphorus 
metabolism processes, phosphate metabolism processes, 
nitrogen compound response processes, cancer pathways, 
PI3K-Akt signaling pathways, MAPK signaling pathways, and 
more. Hormones play a crucial role in regulating the body, 
as the positive and negative feedback of certain hormones 
maintains the harmony and balance of our organism. OA 
is more common in middle-aged and older adults and 
menopausal women. The common factor between these groups 
is hormonal imbalance, which in older adults can easily lead 
to hormonal disruption, resulting in metabolic abnormalities, 
obesity, and other symptoms. Menopausal women might 
experience accelerated aging, obesity, and menopausal issues 
due to hormonal imbalances. OA is highly correlated with 
unhealthy metabolic types such as obesity and hormonal 
imbalances, along with factors such as genetics, age, and 
trauma (chronic, acute, and accidents), all of which contribute 
to the risk of OA [41]. There are various hormones associated 
with OA, such as sex hormones, estrogen, thyroid hormones, 
endogenous melatonin, and 19-carbon steroid hormones, 
among others. Sex hormones, particularly estrogen, have long 
been considered a potential factor in systemic OA, especially in 
women. Estrogen, one of the sex hormones, disrupts cartilage 
through receptor-mediated mechanisms, making women more 
susceptible to OA. Hormone replacement therapy targeted at 
women’s vulnerability to OA can alleviate the adverse effects 
of menopause. Replacing menopausal estrogen can prevent 
arthritis in major joints [42-44]. Predicting thyroid-sensitive 
indicators such as TSHI, TT4RI, TFQI, and FT3/FT4 shows 
a close relationship with OA. Among these indices, TFQI can 
serve as a useful predictor for OA and offer new approaches to 
OA treatment [45]. Endogenous melatonin acting on the MT1 
receptor reverses OA-induced pathological conditions, reduces 
the expression levels of inflammatory factors, participates in 
antioxidant and anti-inflammatory activities, and aids in OA 
treatment [46]. 19-carbon steroid hormones actively regulate 
the balance between synthesis and breakdown factors, suppress 
degradation signaling pathways, inhibit pro-inflammatory 

factors, and play a protective role in cartilage [47]. NO, an 
inorganic nitrogen compound, is also a type of inflammatory 
mediator closely associated with the apoptosis of 
chondrocytes. Chondrocytes, under OA stimulation, become 
cells involved in catabolic metabolism, producing enzymes for 
degradation. This imbalance leads to the degenerative changes 
in joint cartilage. Consequently, the apoptosis of chondrocytes 
is often linked to the onset of OA. The synthesis of reactive 
nitrogen species like NO and its derivatives primarily depends 
on NO synthase. They function as critical cellular messengers 
in proper gene regulation, signal transduction, and cell 
cycling [48]. In inflammatory diseases, NO functions as a 
double-edged sword. Under normal physiological conditions, 
NO serves as an anti-inflammatory agent. Various cytokines 
promote the activity of NOS, resulting in the production 
of abundant NO in cells. Subsequently, NO scavenges free 
radicals and further eradicates microbes, thereby preventing 
cellular damage. However, on the other hand, NO acts as a 
pro-inflammatory factor. Excessive production may lead to 
cytotoxicity as NO reacts with superoxide to form salts like 
peroxynitrite. Secondary chain reactions generate NO2 and 
hydroxide, exacerbating toxicity, causing cellular damage, and 
increasing inflammatory responses [49]. The biological effects 
of NO on chondrocytes are intricate, influenced by multiple 
factors, and involved in various BPs. NO holds promise 
as a new therapeutic target for treating OA. The calcium–
phosphorus ratio has a close risk relationship with pain and 
disability indicators in OA [50]. Literature suggests that 
the release of calcium and phosphorus is related to thyroid 
hormones. When calcium decreases, it stimulates the secretion 
of thyroid hormones. The function of thyroid hormones is to 
maintain calcium homeostasis by dissolving bone minerals, 
inducing renal calcium reabsorption, and phosphorus excretion, 
indicating that lowering the calcium–phosphorus ratio and 
increasing parathyroid hormone levels might be appropriate 
tools for diagnosing OA diseases apart from radiology and 
MRI imaging [51]. The metabolism of phosphates is also 
related to OA. When changes occur in extracellular Ca2+ levels, 

Figure 5: Protein-Gene Ontology-Kyoto Encyclopedia of Genes and Genomes network. BP: Biological process, GO: Gene Ontology, KEGG: Kyoto Encyclopedia of 
Genes and Genomes, CC: Cellular component, MF: Molecular function
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disturbances in pyrophosphate and phosphate metabolism, 
and imbalances between noncollagen protein inhibitors and 
promoters, pathological calcification occurs in the body. In 
most OA joints, basic calcium phosphate (BCP) crystals are 
associated with severe degenerative changes. BCP crystals 
enhance signaling through growth factors like Wnt3a, promote 
cartilage deposition, stimulate cartilage cell enlargement, and 
activate inflammatory bodies, fostering a pro-inflammatory 
environment. This explanation can help understand the 
relationship between phosphates and OA, although the specific 
mechanisms are yet to be investigated [52-54]. According 
to information presented by GCBI, the cancer pathway is 
upstream of the MAPK signaling pathway, which in turn 
is upstream of the apoptosis pathway. Therefore, both the 
cancer pathway and the MAPK signaling pathway have 
some effect on the apoptosis pathway. Since cancer-related 
pathways mainly feature promoting cell proliferation and/or 
inhibiting cell differentiation and death, these pathways are 
highly regulated in OA synovial tissue, exhibiting high cell 
turnover, rapid cell proliferation, differentiation, and death. 
This phenomenon is rational because continuous knee joint 
activity leads to substantial cell death [55,56]. The PI3K/Akt 
signaling pathway is gradually emerging as a new target for 
treating OA. PI3K is a protein with certain catalytic activity 
found widely in various body cells, involved in activities such 
as cell proliferation, migration, and apoptosis, serving as the 
initiating factor for the PI3K/Akt pathway. Akt, a target protein 
with three subtypes and a molecular weight of approximately 
57 kDa, displaying high consistency and sequence homology, 
is the primary downstream effector of PI3K. The PI3K/
Akt signaling pathway occupies a significant position as a 
cellular autophagy pathway, mainly responsible for regulating 
cell activities such as growth, metabolism, and apoptosis. 
It inhibits the activity of autophagy-related protein targets, 

affects downstream effector activity, and reduces cellular 
autophagy capacity. At present, the molecular mechanisms of 
treating OA via the PI3K/Akt pathway primarily fall into two 
categories: first, inhibiting the PI3K/Akt pathway can affect 
chondrocyte autophagy, maintaining cartilage homeostasis, 
suppressing inflammation, and thereby reducing osteoarthritic 
pain; second, activating the PI3K/Akt signaling pathway 
promotes chondrocyte proliferation, reduces cell apoptosis, and 
exerts an anti-arthritic effect [57,58]. In summary, TMF can 
modulate the biological processes of hormone response, cell 
response to nitrogen compounds, phosphorus metabolism, and 
phosphate metabolism, and the pathways of cancer pathways, 
PI3K/AKT pathway, and MAPK pathway, and exhibits 
anti inflammatory, antiviral and anticancer effects, thereby 
alleviating OA’s clinical symptoms. Furthermore, molecular 
docking shows that apart from STAT3, the remaining four core 
targets exhibit good binding capabilities with TMF, indicating 
TMF’s effective binding with specific proteins associated with 
OA. According to network pharmacology, TMF can be used 
to treat OA patients. However, more experiments and clinical 
studies are required to confirm the specific scenarios.

Conclusion
A total of 228 intersection targets for TMF treating OA 

were obtained, and PPI network analysis identified 5 core 
targets: STAT3, SRC, CTNNB1, EGFR, and AKT1. GO 
enrichment analysis yielded 2736 results, while KEGG 
analysis identified 203 pathways. GO and KEGG results 
suggested that TMF in treating OA may involve various 
pathways including hormonal responses, antiviral and 
anticancer effects, anti-inflammation, phosphorus metabolism, 
phosphate metabolism, nitrogen compound responses, 
cancer-related pathways, PI3K-Akt signaling pathway, and 

Figure 6: Molecular docking of TMF with STAT3, SRC, CTNNB1, EGFR, and AKT1. (a) Protein binding of TMF with STAT3; (b) Protein binding 
of TMF with SRC; (c) Protein binding of TMF with CTNNB1; (d) Protein binding of TMF with EGFR; (e) Protein binding of TMF with AKT1
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MAPK signaling pathway. Molecular docking revealed good 
binding affinities between TMF and 4 core targets (SRC, 
CTNNB1, EGFR, and AKT1). TMF might act on multiple 
targets and activate diverse pathways to intervene in OA, 
revealing the molecular processes involved in TMF treatment 
of OA. However, further clinical validation is needed to 
confirm these specific results.
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