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Abstract
Objectives: To analyze the impact of exercise under hypoxic exposure versus normoxic 
exposure on blood glucose level, insulin level, and insulin sensitivity in people at risk of 
Type  2 diabetes mellitus  (T2DM). Materials and Methods: We systematically performed 
electronic searching on PubMed, Web of Science, ProQuest, and Scopus. Primary studies 
that met the inclusion criteria were analyzed using Revman 5.4.1. Results: Nine randomized 
controlled trials were included in this meta‑analysis. We found that physical exercise under 
hypoxic exposure had no significant effect on improving blood glucose levels, insulin 
levels, and insulin sensitivity in the elderly and sedentary people compared to normoxic 
condition. However, physical exercise during hypoxic exposure had a significant effect on 
lowering blood glucose levels in overweight/obese individuals  (pooled Standardized Mean 
Difference = 0.29; 95% confidence interval = 0.01–0.57; P = 0.04). Conclusions: Exercising 
under hypoxic exposure can be an alternative strategy for reducing blood glucose levels in 
overweight/obese people. Nevertheless, in other populations at risk of T2DM, exercising in 
hypoxic conditions gives similar results to normoxic conditions.

Keywords: Exercise, Glucose tolerance, Hypoxic, Obesity, Type 2 diabetes mellitus

The principal causes of these physiological changes are low 
atmospheric pressure and hypoxia, which result in reduced 
PO2 levels  [9]. The application of hypoxic exposure as a 
simulation of altitude to DM and those at risk for T2DM has 
been the focus of numerous studies in recent years. Hypoxic 
conditions are established artificially as a simulation of altitude 
by varying the barometric pressure (hypobaric hypoxic) or the 
percentage of fraction of inspired oxygen/FiO2 in the room or 
chamber (normobaric hypoxic) [11].

Physical exercise is known to reduce insulin resistance, 
since muscular contractions enhance membrane permeability, 
and allow glucose to enter cells  [12]. Physical exercise at 
high altitudes will cause physiological adaptation responses 
that are more rapid and robust than at sea level, since 
hypoxic conditions will induce physiological stress similar 
to that of physical exercise and cause various physiological 
changes  (acclimatization)  [13]. Physical exercise at high 
altitude is known to promote glucose uptake by skeletal 

Introduction

Diabetes mellitus  (DM) is a chronic metabolic disorder 
characterized by high blood glucose levels that can be 

increasing mortality rate  [1,2]. In 2021, estimated that there 
will be 537 million individuals  (aged 20–79) globally with 
diabetes  [3], with type 2 diabetes mellitus  (T2DM) accounting 
for about 85% of cases [4] and type 1 diabetes mellitus (T1DM) 
accounting for only 5%–15% of cases  [5]. Finding effective 
therapeutic approaches to treat diabetes is essential. However, 
concentrating on people with prediabetes or pursuing people 
at risk of developing DM  (before prediabetes manifests) may 
become concerns to halt the onset of T2DM  [6]. Sedentary 
lifestyle, being elderly, being overweight or obese, and having 
insulin resistance are some risk factors for T2DM  [6,7]. 
Intriguingly, the prevalence of DM is lower at high altitudes 
compared to sea level  [8]. In comparison to lowlanders, 
highlanders are known to have lower fasting blood glucose 
levels and improved glucose tolerance [9].

Altitudes are environments between 1500 and 
5500  m  (5000 and 18,000 feet) above the sea level  [10]. 
Significant physiological changes will be induced by both 
short‑ and long‑term exposure to an altitude environment [11]. 
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muscles through an insulin‑independent mechanism, 
hence promoting the process of lowering blood glucose 
levels  [10,14]. According to a recent narrative review, certain 
studies that examined the effects of hypoxia exposure on 
glucose metabolism and health status in individuals at risk 
for T2DM demonstrated advantages over normoxic training. 
Nonetheless, some other studies exhibited no significant 
difference  [6]. Therefore, we aim to conduct a meta‑analysis 
assessing the benefits of physical exercise under hypoxic 
exposure versus normoxic condition on glucose tolerance in 
people at risk of T2DM.

Materials and methods
Searching and selection strategies

This review article followed Preferred Reporting Items 
for Systematic Reviews and Meta‑Analyses  (PRISMA) 
guidelines and was registered in the International Prospective 
Register of Systematic Review  (CRD42022362028). We 
performed an electronic database searching on PubMed, 
Web of Sciences, Proquest, and Scopus for articles up to 
September 2022. Our study was restricted to randomized 
controlled trials  (RCTs) written in English and published 
since 2001. Articles other than RCTs, duplicated studies, 
incomplete data, and articles without full‑text were excluded. 
MeSH terms, Boolean operators, asterisk  (*), and automated 
tools offered by each database were all included in the search 
terms utilized [Table 1].

Inclusion and exclusion criteria
The previously determined eligibility criteria 

before conducting this systematic review were studies 
involving individuals at risk of T2DM, which fulfil 
one of the following criteria: body mass index  (BMI) 
>25  kg/m2, elderly  (>45  years old), or physically inactive/
sedentary  (exercise  <3  times/week). In addition, to ensure 
that the subjects were able to complete the exercise, studies 
involving subjects with good exercise tolerance were included, 
while studies involving subjects with cardiometabolic disease 
were excluded. Studies comparing physical exercise in 
altitude simulation performed under a hypoxic exposure to 
exercise conducted in a normoxic environment with any of 
the following outcomes: Blood glucose levels, insulin levels, 
or insulin sensitivity were included in this meta‑analysis. 
Studies those published prior to 2001, not written in English, 
presenting incomplete data, not available in full‑text and 
duplicates were excluded in this meta‑analysis.

Data extraction
Data extraction was carried out by collecting the data 

and describing study characteristics  (i.e.,  author, year of 
publication), sample characteristics  (i.e.,  subject criteria 
used, age, and BMI), intervention characteristics  (i.e.,  the 
dose of physical exercise and the dose of exposure to 
hypoxic/altitude simulation), and the outcomes  (mean  ±  SD) 
from blood glucose levels, insulin levels, and insulin 
sensitivity [Table 2].

Assessment of bias and quality
Risk‑of‑bias tool for randomized trials  (RoB 2) from 

Cochrane was used to analyze research bias in the RCT 
study design as a critical review to ensure the quality of the 
selected primary study articles. On this scale, five domains 
contain questions that covering randomization process, 
deviations from the intended interventions, missing outcome 
data, measurement of the outcome, and selection of the 
reported result  [15]. Only when at least ten studies have 
been included in the meta‑analysis should tests for funnel 
plot asymmetry be applied  [16]. Two reviewers  (HSNR and 
AA) performed the searching, data extraction, and quality 
assessment. Any disagreement was solved by negotiation or 
a consensus meeting with the other two investigators  (BP 
and CDKW).

Data analysis
A heterogeneity test was conducted to determine the analysis 

model. We performed fixed effect model for studies with low 
heterogeneity  (I2  <  50%), while random effect model was 
used for studies with high heterogeneity  (I2  >  50%)  [17,18]. 
The study will examine the intervention’s effects on blood 
glucose levels, insulin levels, and insulin sensitivity between 
hypoxic and normoxic group. Pre‑  and post‑test  (on hypoxic 
and normoxic groups) and sub‑group analysis was also 
carried out regarding exercise intensity  (moderate and high 
intensity), training load  (constant and progressive), and study 
duration (4 weeks and >4 weeks of intervention) to determine 
the effect on each group. In addition, a sensitivity analysis 
was carried out by eliminating the study with higher risk of 
bias  [18]. Pooled standardized mean difference  (SMD) was 
used to compare the effect of the exercise, with the outcomes 
were also presented in forest plot. Pooled MD is not suitable 
for our case since pooled SMD is used when multiple studies 
utilize various instruments or units to measure the same 
outcome [19]. The effect size of this study is interpreted where 
the effect size is considered small  =  0.2, moderate  =  0.5, and 
large = 0.8 [20]. The statistical power will be calculated using 
the meta power calculator  (available for free on https://jtiebel.

Table 1: Concept and keywords
Concept Keywords
Related to hypoxic exposure/
altitude

(Hypoxi* OR Normoxi* OR Hypobari* OR Normobari* OR altitude OR “high altitude” OR “low oxygen” OR 
“decreased oxygen” OR “oxygen deficienc*”) NOT (Apne* OR pregnanc* OR Obstructive)

Related to glucose tolerance Diabetes OR Diabetic OR hyperglycemi* OR prediabet* OR “impaired glucose toleran*” OR “impaired 
fasting glucose” OR dysglycemia OR “blood glucose” OR “glucose leve*” OR “glucose toleran*” OR “glucose 
homeo*” OR “glucose metabolism” OR “glycemic index” OR “glycemic control” OR “insulin level” OR “insulin 
sensitivit*” OR “HOMA*” OR “insulin resistan*” OR sedentary OR overweight OR obes* OR elderly OR older

Related to physical exercise “Physical Activit*” OR “Physical Exercis*” OR Exercis* OR Training OR “Physical Fitness”
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shinyapps.io/MetaPowerCalculator/). A  study is regarded 
adequately powered if it has a statistical power of 0.8 at a 
significance level of 0.05 [21].

Results
Searching and selection strategies

Our literature search yielded 4.257 studies from four 
selected databases. These studies were then filtered using 
automatic tools or filters that available in the respective 
databases, such as Publication year, document type  (Article), 
language, and subject area  (n = 2.176). The duplication check 
was carried out using the Mendeley desktop application. After 
deleting the duplicates  (n = 709), the remaining 1.467 studies 
were quickly filtered by reading the titles and abstracts. After 
screened each full‑text according to the previously formulated 
inclusion and exclusion criteria, finally, we had eight studies 
and put additional one study from Google Scholar as gray 
literature. The total study used as the primary study in this 
research was nine studies. This selection process is described 
in the PRISMA Flow 2020 diagram [Figure 1].

Assessment of bias and quality
The results of bias analysis using RoB 2 on nine included 

studies showed that three studies had low risk and six studies 
had some concern of bias  [Figure 2]. Sensitivity analysis was 
carried out by eliminating the study with higher of bias one 
by one and the results showed that there were no significant 
changes.

Data extraction
The overall study characteristics are summarized in 

Table  2. The included RCTs consisted of five studies 
using the single‑blinding method  [22‑26], one study with 
double‑blinding  [27], and three studies in which the blinding 
methods were not described  [28‑30]. The total subjects from 
all nine studies were 274 people with either overweight 
obesity, elderly, or having sedentary activity  [22‑30]. The 
intervention given to all selected studies was a combination 
of physical exercise and exposure to hypoxic condition as a 
simulation of altitude by adjusting FiO2 levels.

Analysis of the effect of physical exercise under 
hypoxic exposure on blood glucose levels

The effect of physical exercise under hypoxic and 
normoxic conditions on lowering blood glucose levels 
in adults at risk for diabetes was compared from seven 
research [Supplementary Table 1]. In a fixed‑effect model, the 
findings of analysis revealed no significant difference between 
the two groups, as indicated by pooled SMD  =  0.10  (95% 
confidence interval  [CI] = −0.15–0.36; P  =  0.43)  [Figure  3]. 
In order to conduct a more in‑depth analysis, the effect 
of lowering blood glucose levels in individuals at risk for 
diabetes was further examined using the pre‑  and post‑test 
model under hypoxic and normoxic conditions. However, the 
results of the effect analysis also showed that there was no 
significant difference between pre‑  and post‑test analyses in 
both hypoxic  (pooled SMD  =  0.25; 95% CI = −0.01–0.51; 

Figure 1: Selection study using preferred reporting items for systematic reviews and meta‑analyses flow 2020
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P = 0.06) and normoxic condition  (pooled SMD = 0.30; 95% 
CI = −0.20–0.80; P  =  0.25)  [Figure  4]. In addition, subgroup 
analyses were conducted regarding the dose of exercise, which 
included exercise intensity, training load, and project duration. 
However, all analyses also revealed no effect.

After including overweight‑obese population only by 
eliminating one study with a BMI  <25  kg/m2  (normal 
weight)  [26], different results were found  [Figure 4]. Using the 
same model as previous by comparing the results of the pre‑ and 
post‑test in the physical exercise group under hypoxic exposure, 
the results showed that physical exercise under hypoxic 
exposure had a low significant effect on reducing blood glucose 
levels compared to normoxic condition, as indicated by the 
pooled SMD value of 0.29 (CI = 0.01–0.57; P = 0.04) with the 
statistical power shows a value of 0.3124. The statistical with 
metapower calculator indicates the actual effect size derived 
when heterogeneity is considered. SMD can be translated back 
into a scale that is more familiar to doctors to make it more 
therapeutically meaningful, so in this study an experiment 
was carried out to convert the SMD value into natural units 
by choosing the standard deviation obtained from the largest 
experiment  [31], which is 14.39. The overall mean difference 
was a reduction of fasting blood glucose by exercise under 
hypoxic of 0.29  (95% CI, 0.01–0.57) more than the reduction 
from exercise under normoxic. This is equivalent to a reduction 
in hypoxic exposure of 4.17 mg/dL. In several analyses related 
to blood glucose levels, one study carried out measurements 
twice  (in the 3rd  and 8th  months)  [23]. Furthermore, one study 
was carried out by two types of exercise  (HIIT and Repeated 
Sprint) [27], so these two studies were mentioned repeatedly.

Analysis of the effect of physical exercise under 
hypoxic exposure on insulin levels

Five studies have evaluated the effect of elevating 
insulin levels in people at risk of T2DM by comparing 
the effects of exercise under hypoxic and normoxic 
exposure  [Supplementary Table 2]. The findings of the 
heterogeneity test showed that this study had substantial 
variance  (heterogeneous) as indicated by I2  =  91%, thus the 
effect analysis was then carried out using random effect. The 
effect analysis results showed no significant effect between the 
two groups, as indicated by P  =  0.60. A  further investigation 
was also carried out about the effect of elevating insulin levels 
in individuals at risk of T2DM utilizing the pre‑ and post‑test 
model under exposure to hypoxic and normoxic. The results 
of the effect analysis showed that there was no significant 
effect from the two [Figure 5].

Analysis of the effect of physical exercise under 
hypoxic exposure on insulin sensitivity

Five studies have investigated the effect of improving 
insulin sensitivity in people at risk of T2DM by comparing 
the effects of exercise under hypoxic and normoxic 
exposure  [Supplementary Table 3]. The findings of 
the heterogeneity test showed that this study had high 
heterogeneity, as indicated by I2  =  77%, thus we performed 
a random effect model. The effect analysis results showed no 
significant effect between the two groups, as demonstrated by 
P  =  0.53 (CI = −01.01–0.52). An evaluation was also carried 
out about the effect of improving insulin sensitivity in people 
at risk of T2DM with the pre‑and post‑test model under 
exposure to hypoxic and normoxic. The results of the effect 
study similarly showed that there was no significant influence 
between the two groups [Figure 6].

Discussion
Several risk factors for T2DM are well known. Among 

them are being overweight‑obese, having a sedentary lifestyle 
and being old [6]. Being overweight‑obese is one of the 
main modifiable risk factors  [32,33]. Nearly 90% of diabetes 
patients are previously obese  [34]. The risk of diabetes and 
prediabetes increases with a significant BMI increasing in 
overweight‑obese subjects  [32]. An increase in the number of 
fatty acids, glycerol, hormones, pro‑inflammatory cytokines, 
and other factors will cause disturbances in pancreatic β‑cells, 
insulin sensitivity, and ultimately cause failure to control 
blood glucose levels [7,32]. Another risk is sedentary lifestyle, 
it defined as a sedentary physical activity by doing physical 
exercises  <3  days/week which can cause progressive loss of 
β‑cells, thereby reducing insulin sensitivity and impaired 
glucose tolerance [7]. The last is aging. A clear relationship has 
been found between the prevalence of diabetes and increasing 
age in individuals, as evidenced by the results of studies 
where a risk of  <2%  (16–34  years), 5.1%  (35–54  years), 
14.3%  (55–74  years), and 16.5%  (>75  years)  [32]. Aging 
will increase chronic inflammation and disruption of lipid 
metabolism due to the accumulation of body fat, which leads 
to insulin resistance [7].

The incidence of T2DM has been found to have an inverse 
comparison with physical exercise  [35]. It because the 
contractile activity of the muscles during exercise can induce 
signals to stimulate glucose uptake by insulin independent, 
it can also provide a synergistic effect when combined 
with insulin action on the disposal or utilization of blood 

Figure 2: Risk‑of‑bias tool for randomized trials for bias assessment
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glucose  [36]. Performing physical exercises at altitude have 
been widely used worldwide since the 1968 Olympics in 

Mexico and are famously done to increase endurance  [13]. 
Physical training at altitude causes a physiological 

Figure 3: Forest plot of blood glucose levels analysis comparing exercise under hypoxia exposure versus normoxia. (a). Overall data (b). Subgroup analysis: Moderate 
intensity, high intenstity, constant load, progressive load, 4 weeks intervention, >4 weeks interventions
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adaptation response faster and more significantly than at 
low altitude  [13,37]. Exercising at altitude is also known 
to increase glucose uptake through an insulin‑independent 
mechanism to the skeletal muscles that will further encourage 
the process of reducing blood glucose levels because both 
physical exercise and being in a hypoxic environment 
facilitate this [10,38].

To our knowledge, this is the first study that systematically 
investigates the effect of physical exercise under hypoxic 
compared to normoxic condition on glucose in people at 
risk of T2DM. The present meta‑analysis revealed that 
physical exercise under exposure to hypoxia did not give a 
significant effect on improving blood glucose levels, insulin 
levels, and insulin sensitivity in elderly and sedentary people. 
However, physical exercise under exposure hypoxia has a 
low significant effect on reducing blood glucose levels in 
subjects with BMI >25 kg/m2. The reason for the insignificant 

result was mentioned by possibly due to insufficient dose of 
intervention  (either intensity, amount, or duration) to induce 
changes significantly  [25,26]. Even though high‑intensity 
exercise and hypoxic exposure have been carried out, this 
may still not be enough to cause a hypoxic condition for the 
subject  [24]. This is because the regulation of the hypoxic 
environment simulation is carried out by adjusting the FiO2 
level in the chamber or mask, while the hypoxic response in 
each individual can vary from one to another  [25]. Therefore, 
compared to giving exposure to hypoxia by adjusting the 
FiO2 level in a mask or chamber, it would be better if a target 
of SpO2  =  80% was used for each subject so that hypoxic 
conditions could be controlled precisely  [26]. In addition, 
the various study characteristics may also affect the results 
of the analysis. Analysis of the time or duration of the study 
showed that training within 4  weeks and  >4  weeks did not 
have a significant effect. Even yet, a shorter training regimen 

Figure 4: Forest plot of blood glucose levels analysis comparing pretest versus posttest of exercise under hypoxia exposure (a) All subject, (b) overweight‑obese individuals 
only, (c) Analysis comparing pretest versus posttest of exercise under normoxia exposure
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might produce better outcomes. Exercises performed in 
normoxia and hypoxia as well as measurements taken in the 
3rd  and 8th  months showed that the examination results in the 
3rd month were better than those in the eighth [23]. This shows 
that endocrine adaptation has a limit after a specific amount 
of time, including glucoregulatory hormones and metabolites, 
thus it is best to avoid using the same intervention or 
stimulation beyond 3 months [23].

In the analysis of physical exercise under hypoxic 
exposure on decreasing blood glucose levels by comparing 
the pre‑ and post‑test groups, different results were found after 
the subject’s BMI criteria were specified to BMI  >25  kg/m2 
(overweight‑obese) by eliminating 1 study  [26]. In general, 
obesity is associated to hypoxic condition  [39]. Several 
potential reasons that cause hypoxic conditions in obesity, 
including:  (1) Insufficient blood supply to adipose tissue  [40]. 
In obese subjects, a decrease in blood flow to adipose tissue 
and muscle was found by around 30%–40% compared to 
nonobese subjects  [41]. It is also known that capillary density 
is 44% lower and vascular endothelial growth factor is 58% 
lower, which indicates lower PO2 levels in overweight and 
obese subjects compared to nonobese subjects  [39,40],  (2) 
obese subjects will experience adipose cell hyperplasia and 
hypertrophy  [42]. The adipose tissue will increase while 
the oxygen diffusion capacity is limited to 150–200  µm 

only [39] and  (3) increased oxygen demand by adipose cells 
and inflammatory cells [40].

As previously indicated, hypoxia is not always experienced 
by all subjects exposed to hypoxia because individual reactions 
differ  [25,26]. This complex adaptation of hypoxic tendencies 
due to changes in oxygen concentrations in adipose tissue 
that are dependent on body fat may be responsible for the 
disparities in blood glucose levels between overweight and obese 
patients [26]. Overweight and obesity, as well as physical activity 
and exposure to hypoxia, limit oxygen supply. When oxygen 
supply and demand are imbalanced (need is greater than supply), 
a progressive transition from aerobic glycolysis to anaerobic 
glycolysis occurs in the mitochondria [43]. To sustain the current 
level of ATP production, anaerobic glycolysis will accelerate [44]. 
Despite producing less ATP than aerobic glycolysis, anaerobic 
glycolysis occurs 100  times more quickly  [45]. This increase in 
glycolysis will result in a rise in glucose uptake and a subsequent 
decrease in blood glucose levels  [46]. The combination of 
exposure to a hypoxic environment and exercise in people with 
obesity would have a good influence by normalizing glucose 
and lipid metabolism, boosting blood flow, and decreasing 
inflammation and fibrosis [43].

Based on the effect analysis results, a decrease in blood 
glucose levels was found. In contrast, insulin levels and 

Figure 5: Forest plot of insulin levels analysis. (a) Analysis comparing exercise under hypoxia exposure versus normoxia, (b) Subgroup analysis comparing pre‑test versus 
post‑test of exercise under hypoxia and normoxia
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sensitivity parameters were not detected to have improved. This 
is due to hypoxic conditions, stimulating more blood glucose 
uptake with independent insulin  [10,14]. It was previously 
known that insulin would stimulate GLUT‑4 as a glucose 
co‑transporter which causes an increase in glucoregulation so 
that blood glucose levels can decrease  [47,48]. Insulin is also 
mentioned as anti‑GSK3, which will activate glucose synthesis, 
leading to reduced blood glucose levels  [49]. Nonetheless, 
hypoxic conditions and greater muscular contraction due to 
exercise can increase the adenosine monophosphate (AMP)/
ATP ratio, resulting in the activation of AMPK (AMP‑activated 
protein kinase)  [50]. AMPK will then activate AS160 and 
induce an increase in GLUT‑4 translocation, resulting 
in a decrease in glucose absorption and blood glucose 
levels  [51‑53]. It was also discovered that an increase in 
AMPK would phosphorylate GSK3 and render it inactive [54]. 
Glycogen synthase kinase‑3  (GSK3) is reportedly one of the 
enzymes that regulate glycogen synthesis  (GS)  [55]. GSK3 
inactivation has been demonstrated to have an anti‑diabetic 
impact by stimulating GS so that glycogenesis increases and 
blood glucose levels decrease  [49]. In addition to enhancing 
GS, it might also inhibit gluconeogenesis and effectively 
lowering blood glucose levels in rat models of T2DM  [55]. 
Consequently, it is possible to reduce blood glucose levels 
without increasing insulin production.

Furthermore, several limitations may cause the results 
of the analysis of exercise under hypoxic exposure to be 
insignificant, such as due to the small number of studies 
that can be analyzed accompanied by a relatively few 
of subjects, such as in the moderate‑intensity exercise 
subgroup  (4 data from 3 studies), exercise with program 
duration 4  weeks  (3 data from 3 studies), training with 
progressive loads  (3 data from 3 studies). In addition, it 
is fascinating to conduct research in developing countries 
because the primary studies are carried out in developed 
countries.

Conclusions
Our meta‑analysis found that physical exercise in a hypoxic 

condition did not significantly improve blood glucose levels, 
insulin levels, and insulin sensitivity in people at risk of 
developing T2DM compared to normoxic condition. However, 
but it had a benefits on reducing blood glucose level in subjects 
with BMI >25 kg/m2. To better regulate hypoxic conditioning 
in each person, the stimulation of hypoxic must be conducted 
that is more concentrated on employing SpO2 targets than on 
modifying FiO2 levels in chambers or masks. In order to fully 
comprehend the range of impacts and physiological pathways, 
further research is required on the type, amount, and features 
of exercise and hypoxia.

Figure 6: Forest plot of insulin sensitivity analysis. (a) Analysis comparing exercise under hypoxia exposure versus normoxia, (b) Subgroup analysis comparing pre‑test 
versus post‑test of exercise under hypoxia and normoxia
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Supplementary Table 1: Summary of meta‑analysis results on blood glucose levels
Outcome/subgroup Number 

of study
Sample 

size
Statistical method Effect estimate (pooled 

SMD with 95% CI and P)
Blood glucose levels (hypoxia ‑ normoxia) [23,25‑30] 7 236 Fixed effect (I2)=0% 0.10 (−0.15–0.36; 0.43)

Blood glucose levels (pre‑ and post‑test‑hypoxia) 7 238 Fixed effect (I2=43% 0.25 (−0.01–0.51; 0.06)
Blood glucose levels (pre‑ and post‑test‑normoxia) 7 234 Random effect (I2)=70% 0.30 (−0.20–0.80; 0.25)
Subgroup

Moderate intensity [23,28,29] 3 91 Fixed effect (I2)=0% −0.11 (0.53–0.30; 0.60)
High intensity [26,27] 2 90 Fixed effect (I2)=0% 0.25 (−0.15–0.68; 0.21)
Constant load [23,25,28‑30] 5 136 Fixed effect (I2)=0% 0.0 (−0.34–0.34; 0.99)
Progressive load [26,27] 2 90 Fixed effect (I2)=0% 0.25 (−0.15–0.68; 0.21)
4 weeks intervention [26,28,29] 3 68 Random effect (I2)=0% −0.20 (−0.68–0.28; 0.42)
>4 weeks intervention [23,25,27,30] 4 158 Fixed effect (I2)=0% 0.24 (−0.08–0.56; 0.14)

Blood glucose levels (overweight/obesity ‑ hypoxia) [23,25,27‑30] 6 208 Fixed effect (I2)=48% 0.29 (0.01–0.57; 0.04)*
*Significant at P<0.05.[18] SMD: Standardized mean difference, CI: Confidence interval

Supplementary Table 2: Summary of meta‑analysis results on insulin levels
Outcome/subgroup Number 

study
Sample 

size
Statistical method Effect estimate (pooled 

SMD with 95% CI and P)
Insulin levels (hypoxia ‑ normoxic) [22,25,28‑30] 5 127 Random effect (I2)=91% 0.37 (−1.02–1.76; P=0.60)

Insulin levels (pre‑ and post‑test‑hypoxia) 5 130 Random effect (I2)=87% 0.98 (−0.11–2.06; P=0.08)
Insulin levels (pre‑ and post‑test‑normoxic) 5 124 Random effect (I2)=91% 1.18 (−0.23–2.60; P=0.10)

SMD: Standardized mean difference, CI: Confdence interval

Supplementary Table 3: Summary of meta‑analysis results on insulin sensitivity
Outcome/subgroup Number 

of study
Sample 

size
Statistical method Effect estimate (pooled 

SMD with 95% CI and P)
Insulin sensitivity (hypoxia ‑ normoxia) [22,24,25,29,30] 5 132 Random effect (I2)=77% −0.24 (−01.01–0.52; 0.53)

Insulin sensitivity (pre‑ and post‑test‑hypoxia) 5 136 Random effect (I2)=88% 0.85 (−0.26–1.96; 0.13)
Insulin sensitivity (pre‑and post‑test‑normoxia) 5 128 Random effect (I2)=87% 0.53 (−0.53–1.60; 0.33)

SMD: Standardized mean difference, CI: Confdence interval
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