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Abstract
Traditional Chinese medicine (TCM) has the characteristics of multi‑component, 
multi‑target, and biological systems coordination, which meet the criteria of the network 
pharmacological application. Therefore, using network pharmacology to discover 
the relationship between TCM, diseases, and cellular responses is easily achievable. 
Aging‑induced imbalanced homeostasis is a risk factor for Alzheimer’s disease (AD), 
a neuronal disease regulated by multiple genes. Meta‑analysis of TCM in metabolic 
regulation to improve symptoms of AD helps understand the pharmacological effects. The 
drug targets of TCM can be investigated using a holistic network pharmacology approach 
to find potential modulators involved in AD‑related metabolic pathways. Based on the 
theoretical prediction of TCM for AD, experimental validation is needed to develop pure 
compounds for specific treatments.

Keywords: Alzheimer’s disease, Network pharmacology, Traditional Chinese medicine

stage of AD, which provides a time window for interventional 
therapy to reverse or redirect the imbalanced systemic 
homeostasis. Brain energetics reprogramming restores the 
neuron to a vibrant state [6]. Furthermore, recent papers report 
that stress‑induced epichaperome, disease‑associated scaffolds, 
or chaperones adapt the brain to environmental stressors  [7]. 
However, persistent stressors fail to adjust homeostasis and 
instead use these protein connections to demolish neuronal 
structure. Pharmacological manipulation can rearrange these 
protein‑protein interactions  (PPIs) before disease progression. 
Therefore, in the search for new compounds, analysis of 
protein‑protein or protein‑drug interactions using network 
pharmacology is increasingly becoming an attractive tool for 
developing drugs for neurodegenerative diseases.

Allopathic therapy, also known as conventional Western 
medicine, has been a central concept in modern medicine 
for decades, treating these diseases with evidence‑based 
diagnosis and scientifically approved therapeutic strategies. 
However, systemic dysregulation of homeostasis appears to 
be the predominant pathology in patients with sporadic AD. 

Introduction

Neurodegenerative diseases are a broad definition of 
neurological defects based on loss of neuronal function. 

Alzheimer’s disease  (AD) is one of the major types of 
neurodegenerative diseases  [1]. AD is a complex neurological 
disease associated with memory and cognition impairment 
caused by a variety of physiological dysfunctions. Gene 
mutations are present in a small subset of AD patients, leading 
to the early onset. However, metabolic disturbances and 
environmental factors are key risks for AD in most sporadic 
patients. These disturbances induce elevated oxidative stress, 
accumulation of abnormal protein aggregates, cerebrovascular 
dysfunction, and neuroinflammation, resulting in neuronal 
damage and disease onset  [2]. The high bioenergetic demand 
of neurons makes them susceptible to damage caused by 
metabolic stress.

During aging, dysregulation of glucose and lipid metabolism 
leads to energy deficits and mitochondrial dysfunction in 
AD [3]. The energy utility of the brain depends on allostasis in 
response to lifestyle challenges  [4]. A  healthy brain adapts to 
acute ectopic load, but a pathological brain loses adaptability 
due to accumulated chronic allostatic load. Long‑term allostatic 
overload caused by environmental stressors impairs brain 
architectures and induces aberrant epigenetic regulation  [5]. 
The consequence is permanent cognitive impairment in the 
brain. Notably, the brain exhibits neuroplasticity in the early 
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The risk of systemic dysfunction increases with age, implying 
that these multiple high‑stress effectors associated with aging 
impair these known aging‑related neurodegenerative diseases. 
Therefore, one molecule targeting one symptom is not enough 
to defeat the disease because the causes of damage are diverse.

Traditional Chinese medicine  (TCM) has a long history of 
application, with two core concepts, including Qi  (referring 
to the vital energy of the body) reconciliation and stress 
alleviation, making TCM a systemic medicine different from 
Western medicine  [8]. It is increasingly convincing that 
sporadic AD is a systemic metabolic disorder  [9]. Alterations 
in the expression of numerous genes are associated with 
abnormalities in various tissues or organs, triggering functional 
defects and accelerating disease progression. TCM is a herbal 
prescription that contains more than one plant used to treat 
diseases. Several TCMs have been shown to improve neuronal 
function in cognition  [10‑14]. Some of these TCMs have 
exerted functions on cardiovascular disease, inflammation, 
diabetes, obesity, and other metabolic disorders  [15‑18]. 
Studies of defined TCMs have been shown to modulate 
levels of blood lipid, cholesterol, glucose, metabolites, and 
antioxidants, which are metabolic risks of neurodegenerative 
diseases. Few studies have clearly described the role of TCM 
in the relationship between metabolism and neurodegeneration. 
Due to the complexity of these prescription extracts, it is 
not easy to prove the pharmacological effects of TCM. The 
alternative research approach is to use systemic pharmacology 
that integrates chemical analysis, pharmacokinetics, target 
screening, and pathway network interactions to elucidate 
the therapeutic mechanism of TCM. Based on this holistic 
approach, the distinct modulation of metabolic dysfunction, 
inflammation, and neurodegeneration by compounds extracted 

from TCM shows synergistic effects ranging from the 
molecular level to cellular level even biological organism.

In this review, the relationship between metabolism and AD 
is summarized from systematic network pharmacology studies 
of documented TCM formulas, focusing on target molecules 
and pathway regulation.

Metabolic dysfunction in Alzheimer’s 
disease

As an energy‑intensive organ, the brain requires tight 
regulation on metabolic homeostasis. Imbalances in glucose 
and lipid metabolism and an unhealthy lifestyle affect insulin 
response and lead to insulin resistance  (IR) in the brain, 
thereby increasing the risk of AD during aging  [Figure  1]. 
A  number of papers classify AD as type  3 diabetes, which 
means that patients with AD and metabolic disorder share 
similar pathological symptoms and abnormal signaling 
pathways  [19]. Chronic hyperinsulinemia due to IR alters the 
permeability of the brain barrier, resulting in the transport of 
inflammatory cytokines, oxidative substances, and molecules 
that induce lipotoxicity and glucotoxicity from the blood to 
the brain [20]. These toxic molecules trigger aberrant amyloid 
peptide  (Aβ) aggregation and tau phosphorylation, which 
disrupt the endothelial structure of small vessels and induce 
neuronal apoptosis. IR reduces PI3K‑AKT activity through 
insulin signaling that preserves the activity of glycogen 
synthase kinase‑3 beta  (GSK3β) to phosphorylate tau 
protein, leading to its accumulation in the brain. Insufficient 
insulin‑degrading enzyme  (IDE) levels caused by IR cannot 
remove excess Aβ and insulin, so maintaining IDE levels 
in the brain is a consideration in AD treatment  [21]. These 

Figure 1: Major metabolic pathways and related genes involved in AD. Molecules in blue line boxes are known targets of TCMs listed in the left panel. AD: Alzheimer’s 
disease, TCMs: Traditional Chinese medicine
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dysregulated metabolic pathways promote the accumulation of 
aggregated proteins and harmful substances in the brain, which 
induce neuronal damage and ultimately burst into irreversible 
AD neurodegeneration.

Several commonly used TCM prescriptions 
for AD, including Danggui‑Shaoyao‑San  (DSS), 
Tianma‑Gouteng  (TMGT), Bushen Tiansui  (BSTS), and 
Kai‑Xin‑San  (KXS), have been reported to modulate the 
AD‑like symptoms. The main functions of these TCM in 
metabolism are documented, and some of them share the 
same regulatory nodes in the pathological pathways of AD. 
DSS regulates lipid homeostasis and glycolysis to promote 
the gut health, as disturbances in the gut environment 
are highly associated with AD  [22]. DSS attenuates 
neuroinflammation via nuclear factor‑kappa B  (NF‑κB) 
pathway, which is also involved in Aβ production  [10,23]. 
Docking analysis of targets in cerebral ischemia studies 
reveals that MAPK1, AKT, and SRC kinases are regulated 
by DSS  [24], and the abnormal insulin‑PI3K‑Akt signaling 
observed in AD suggests that this pathway can be targeted 
by DSS in AD  [25]. TMGT has antihypertensive effects, 
including reduction of oxidative substances and inflammatory 
cytokines, and modulation of peroxisome proliferator‑activated 
receptor‑gamma coactivator 1‑α  (PGC1α)‑peroxisome 
proliferator‑activated receptor‑γ  (PPARγ) signaling pathway 
to improve vascular function in angiotensin II‑induced 
hypertensive rats  [26]. Molecular docking analysis discovers 
that TMGT ingredients inhibit arachidonate 15‑lipoxygenase 
and mitigate lipid peroxidation to prevent neuronal loss  [27]. 
BSTS rescues synaptic loss and induces neurotrophic factor 
release to activate the TrkB‑PI3K‑Akt pathway in AD  [28]. 
KXS accelerates the clearance of excess Aβ by inducing 
IDE expression to prevent pathological changes in the 

hippocampus [29]. After KXS treatment, mice with depressive 
symptoms have increased tight junction‑related proteins and 
decreased inflammatory cytokines in the gut and brain  [30]. 
Experimental evidence provides insight into the modulation 
of metabolic pathways involved in AD as possible targets for 
TCM. To accelerate drug development, systematic network 
analysis is required to mine potential TCM targets that may 
act as undiscovered or unvalidated regulators in AD models, 
followed by experimental validation.

Network of pharmacology
Advances in genetic bioinformatics, systemic biology, 

and polypharmacology have accelerated the development of 
network pharmacology to integrate information from these 
systems. Due to the synergistic effects, systematic analytical 
tools must be developed to study the multi‑component, 
multi‑rule, and multi‑target characteristics of TCM. 
Network‑based approaches in TCM use computational 
algorithms to elucidate the underlying mechanisms of bioactive 
compounds and identify the underlying synergistic effects [31]. 
Commonly used TCM ingredient databases, including 
TCMSP  (https://tcmsp‑e.com/), TCMID  (http://bidd.group/
TCMID/), and ETCM  (http://www.tcmip.cn/ETCM/), collect 
information on target validation or prediction  [32]. Using 
the established database, we can construct a “disease‑gene/
target‑drug” flowchart to mine potential TCM with synergistic 
effects on AD  [Figure  2]. Based on disease gene‑related 
information obtained from OMIM (https://omim.org/), HPO 
(https://hpo.jax.org/), and DisGeNET (https://www.disgenet.
org/), AD‑related genes are analyzed by KEGG  (https://
www.genome.jp/) and Gene Ontology (http://geneontology.
org/) to reveal enriched signaling pathways involving in 
different functions. These biological databases provide 

Figure 2: A network pharmacology flowchart for investigating candidate TCM targets that modulate metabolic pathways responsible for AD pathogenesis. KEGG: Kyoto 
encyclopedia of genes and genomes, PPI: Protein‑protein interaction, AD: Alzheimer’s disease, TCMs: Traditional Chinese medicine
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researchers with a network of comparison and interaction 
between “compound‑gene” and “gene‑disease” to investigate 
the detailed relationships between TCM and AD. Several 
commonly used tools, such as STITCH  (http://stitch.embl.
de/), DrugBank  (https://go.drugbank.com/), ChEMBL  (https://
www.ebi.ac.uk/chembl/), and PubChem  (https://pubchem.
ncbi.nlm.nih.gov/), are drug‑based databases that provide 
drug target information. IntAct  (https://www.ebi.ac.uk/intact/
home), BioGrid (https://thebiogrid.org/), and STRING (https://
string‑db.org/) can delineate network connections between 
drug‑targeted proteins or their related proteins predicted 
from PPI databases to identify previously unrevealed 
disease‑related drug targets. Furthermore, system analysis 
requires computational network algorithms to demonstrate key 
nodes in distinct clusters. Drug‑target interaction algorithms 
for predicting novel associations from drug and gene/
protein databases are developed to improve the establishment 
of network topology information  [33]. Therefore, the 
development of network pharmacology diminishes the cost, 
reduces the risk, and saves time in researching new bioactive 
compounds for disease treatment. Researchers can conduct 
these tools and experimental knowledge to determine effective 
substances in TCM for AD.

Danggui‑Shaoyao‑San
DSS consists of six Chinese herbs, including 

Angelica sinensis  (Oliv.) Diels  (DangGui), Paeonia 
lactiflora Pallas  (BaiShao), Atractylodes macrocephala 
Koidz. rhizoma  (BaiZhu), Ligusticum chuanxiong Hort. 
rhizoma  (ChuanXiong), Alisma orientalis  (Sam.) Juzep. 
rhizoma  (ZeXie), and Poria cocos  (Schw.) Wolf  (FuLing), 
traditionally used for menorrhagia in women and to regulate 
the hypothalamic–pituitary–ovarian axis  [34]. DSS has been 
widely used in recent decades for cognitive impairment based 
on its antioxidant activity and anti‑inflammatory effects  [10]. 
DSS also regulates the production of neurotrophic factor and 
neurotransmitter production to prevent age‑induced cellular 
damages in the brain. DSS improves glucose metabolism 
and blood lipid homeostasis in diabetes‑induced cognitive 
dysfunction mice and increases neurotrophic factors against 
neuronal damage  [35]. DSS alleviates cognitive deficits by 
increasing antioxidant levels to reduce mitochondrial damage 
caused by galactosemia  [36,37]. Cognitively impaired 
mice receiving DSS have reduced AD‑like symptoms and 
improved barrier function in the hippocampus and gut  [22,38]. 
DSS modulates lipid metabolism pathways by increasing 
PPARγ/LXR expression in the hippocampus and gut, 
suggesting a role for DSS in the AD gut‑brain axis. Based 
on experimental knowledge, growing data are derived from 
network pharmacology analysis that helps to find possible 
DSS regulatory nodes to understand the interplay between 
AD and metabolism. A  network construct of DSS has been 
computerized to reveal the compound with anti‑AD effects 
that modulate multiple biological processes associated with AD 
pathogenesis [39,40]. According to large‑scale pharmacological 
experimental data, several compounds are beneficial for 
AD, such as quercetin, apigenin, luteolin, kaempferol, and 
γ‑aminobutyric acid  [41,42]. Apigenin exhibits antidiabetic 
and anti‑oxidative effects and stimulates nitric oxide release, 

which prevents microvessel damage from hyperglycemia  [42]. 
Luteolin modulates the inflammation and oxidation stress in 
AD, and also reduces Aβ deposit and increases insulin utility 
in the brain  [43]. Kaempferol is a polyphenol whose primary 
function is to scavenge free radicals and activate anti‑oxidative 
enzymes to prevent neuronal degeneration  [44]. Table  1 
summarizes previous DSS network studies targeting AD and 
metabolic pathways. The dataset obtained from overlapping 
analyses of the AD‑related genes and DSS targets provides 
predicted molecules involved in metabolic pathways  [39]. 
Metabolic experiments in rodents have shown that the 
DSS‑regulated genes are involved in lipid metabolism in the 
liver and brain  [22,45,46]. These metabolism‑related targets, 
including TNF involved in hepatic lipid homeostasis, AKT1, 
PPARG, HSP90AA1, EGFR, ESR1, and MAPK14 involved 
in nonalcoholic fatty liver diseases, and ALOX15 and iPLA2 
involved in docosahexaenoic acid metabolism in the brain, 
are AD‑related DSS targets. Neuronal lipid metabolism 
is essential for energy production, cellular structure, and 
signaling molecules. For example, binding the lipid hormone 
17β‑estradiol to the estrogen receptor encoded by ESR1 can 
promote blood–brain barrier  (BBB) function  [47]. PPARG 
not only regulates lipid homeostasis in the brain but also 
regulates mitochondrial function, Aβ metabolism, and neuronal 
inflammation [48]. As DSS primarily regulates lipid metabolism 
in the liver, how DSS affects the expression of these genes and 
their function in the brain remains to be elucidated.

We performed a Venn analysis using AD‑associated 
genes  (Phenotype  MIM ID: 104300 in OMIM; MCID: 
ALZ065 in the MalaCards database) and DSS targets from 
Wu et  al. [39] to further analyze their cross‑targets with 
metabolic diseases. We obtained 32, 29, and 8 AD‑related 
DSS targets associated with diabetes  (MCID: TYP009 in the 
MalaCards database), hypertension  (MCID: HYP595 in the 
MalaCards database), and atherosclerosis  (MCID: ATH013 in 
MalaCards database), respectively. Figure  3 shows the genes 
of intersection between drugs and diseases, and the hub genes 
are listed in the table.

Tianma‑Gouteng
The formula of TMGT is widely used in patients with 

hypertension and cerebral ischemia, indicating its primary 
function is to modulate vascular healthy  [49,50]. TMGT 
is composed of 11 herbs, including Gastrodia elata 
Blume rhizoma  (Tianma), Uncaria rhynchophylla  (Miq.) 
Jacks  (GouTeng), Concha Haliotidis  (ShiJueMing), Gardenia 
Jasminoides J. Ellis  (ZhiZi), Scutellaria baicalensis 
Georgi  (HuangQin), Achyranthes bidentata Blume radix 
(HuaiNiuXi), Eucommia ulmoides Oliv  (DuZhong), 
Leonurus Artemisia  (Laur.) S. Y. Hu F  (YiMuCao), 
Loranthus parasiticus  (L.) Merr  (SangJiSheng), Polygonum 
multiflorum Thunb.  (ShouWuTeng), and Poria cocos  (Schw.) 
Wolf  (FuLing). TMGT extracts reduce the secretion of 
vasoconstrictors thromboxane A2 and angiotensin II to 
lower blood pressure. TMGT contributes to reverse vascular 
remodeling which can improve cardiac function. The 
anti‑apoptotic effect of TMGT exerts cardiovascular protection 
in regulating the caspase pathway. TMGT attenuates the 
immune response of neuroglial cells and preserves cell viability. 
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Recently, TMGT molecular docking analysis discovers that 
ALOX15 may be a target for reducing lipid peroxidation 
and improved pathological symptoms in neurodegenerative 
disease  [27]. Increased ALOX15-encoded 12/15-lipoxygenase 
in Swedish familial AD mutations regulates amyloid plague 
production and tau phosphorylation [51].  Experimental data 
indicate that TMGT can alleviate vascular diseases caused 
by hypertension or lipid metabolism. The construction of 
the TMGT computational network based on ingredient 
analysis, molecular docking, and PPIs provides a broad 
perspective for searching details and unexpected key nodes 
between AD and metabolism  [52]. Twelve AD‑associated 
TMGT compounds target 11 genes with the most promising 
nodes  (node degree  >5), of which 5 genes  (ABCG2, ACHE, 
BACE1, MATP, and PTGS1) are reported to be associated 
with AD [Table 1]. Based on the target analysis of AD‑related 
TMGT compounds, predicted genes are enriched onto KEGG 
pathways, including serotonergic synapse, dopaminergic 
synapse, arachidonic acid metabolism, linoleic acid 
metabolism, steroid hormone biosynthesis, arginine and proline 
metabolism, tryptophan metabolism, retinol metabolism, and 
metabolism of xenobiotics by cytochrome P450. Most of these 
pathways are associated with lipid or hormone biosynthesis, 
suggesting the effects of TMGT on lipid metabolism. Notably, 
network analysis of TMGT reveals that two drug‑resistant 
transporters, ABCG2 and ABCB1, are hypertension‑related 
genes. The role of ABCG2 on urate elimination has been 
experimentally documented  [53]. Both ABCG2 and ABCB1 
are located on the luminal membrane of BBB endothelial cells 
to help exclude Aβ [54]. TMGT has been used in patients with 
renal hypertension [55] and rats with Aβ deposition in the 
retina [56]; accordingly, it is speculated that TMGT contributes 
to Aβ metabolism in the brain. These data allow researchers to 
find other unreported metabolic targets associated with AD, but 
further experiments are needed. The roles of TMGT targeting 
AD‑related genes in free radical scavenging, inflammation, 
and vascular function have been implicated in hypertensive 
pathology. The synergistic effects of TMGT on metabolic 
disorders are further analyzed using the predicted targets from 
the study of Wang et  al. [52] A  summary of disease‑related 
genes is listed [Figure 3].

Bushen Tiansui
BSTS is improved and derived from the old prescription 

Kong‑sheng‑zhen‑zhong‑dan, which has been included in 
the “Qianjin Fang” by the pharmacologist Sun Simiao. 
This formula is composed of six herbs, including 
Epimedium acuminatum  Franch.  (YinYangHuo), Fallopia 
multiflora  (Thunb.) Harald.  (HeShouWu), Polygala tenuifolia 
Willd.  (YuanZhi), Acorus tatarinowii Schott.  (ShiChangPu), 
Plastrum Testudinis  (GuiBan), and Ossa draconis  (LongGu). 
The traditional medical theory holds that nourishing the 
kidney and replenishing the essence of blood is the key 
to treat dementia. In Aβ‑induced dementia rats, BSTS 
regulates the synaptic function to protect memory deficits in 
AD animals  [28]. Modern pharmacological analysis of the 
composition of BSTS compounds shows several bioactive 
compounds that benefit neurological function. Icariin, rich 
in BSTS extract, has been shown to inhibit β‑secretase 
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activity, reduce Aβ deposition in the hippocampus, prevent 
tau hyperphosphorylation, and promote antioxidant activity 
and Sirt1 function and is therefore considered a candidate for 
AD treatment  [57]. Active components such as kaempferol, 
luteolin, and quercetin present in the extract are screened 
from Epimedium, the main herbal component in BSTS, which 
has the neuroprotective effect of BSTS against AD  [58]. 
This old formula has been modified based on theoretical 
and clinical studies. Still it is a time‑consuming work, so 
network pharmacology analysis is required to determine the 
effective BSTS  [59]. Metabolite analysis in the blood of AD 
rats treated with BSTS reveals increases in serotonin, linoleic 
acid, and α‑linolenic acid, partially regulated by BSTS target 
genes, including CYP1A1, CYP3A4, ALOX5, HTR3A, and 
GRIA2  [Table  1]. Some predictive BSTS targets associated 
with AD are not directly involved in metabolic pathways 
but tend to response to intermediate metabolites. BSTS 
administration balances dysregulated amino acid metabolism, 
and recovers abnormal lipidomic profiles, including 
sphingolipid metabolism, glycerophospholipid metabolism, 
and linoleic acid metabolism in cerebral cortex of AD 
rats  [60]. Previous network pharmacology studies of BSTS 
on AD and metabolism are limited; however, a significant 
role for BSTS in lipid metabolism is confirmed, guiding the 
experimental design for further investigation.

Kai‑Xin‑San
The four components in KXS, including Panax ginseng 

C. A. Mey  (RenShen), Polygala tenuifolia Willd.  (YuanZhi), 
Acorus tatarinowii Schott.  (ShiChangPu), and Poria 
cocos  (Schw.) Wolf  (FuLing) are well‑known medical herbs 
commonly used for neurological disorders such as depression 
and dementia  [Table  1]. Modulation of inflammation, 

neurotransmitter, and neurotrophic secretion is the primary 
function of KXS in neurological dysfunction [61,62]. Recently, 
two independent laboratories investigate metabolic profiling 
in AD models to reveal the metabolic pathways regulated 
by KXS  [63,64]. KXS reverses changes in lipid metabolites 
and downregulated the expression of apolipoproteins and 
phospholipid transfer proteins in AD animals to improve 
cognitive function. These studies aim to search for metabolic 
biomarkers of KXS to assess the therapeutic efficacy but have 
not yet demonstrated how KXS modulates disease‑related 
genes to affect metabolic changes. Network pharmacology 
analysis of KXS discloses the interconnections between 
ingredients and AD‑related genes  [65]. The integration of 
pathway analysis classifies KXS‑targeted AD‑related genes 
and reveals their potential locations in metabolic processes. 
Luo et  al.  have elucidated five regulatory modules of 
KXS, and the coordination among the pathway modules 
highlights the switching nodes of multiple functions of KXS 
in AD pathology [65]. These KXS target AD‑related genes 
involved in glucose metabolism, Aβ‑related pathways, tau 
protein‑related pathways, cholinergic system pathways, 
and TNF‑mediated inflammation are summarized in 
Table  1. Jiao et  al. provide KXS network analysis and 
detailed experiments to validate the predicted pathway of 
tau hyperphosphorylation activated by GSK‑3β/cyclin‑D 
kinase 5  (CDK5) in senescence‑accelerated mice  [66]. KXS 
inhibits Toll‑like receptor 4/myeloid differentiation factor 88/
NF‑κB signaling and reduces inflammatory cytokines and 
nucleotide‑binding oligomerization domain‑like receptor 
family pyrin domain containing 3  (NLRP3) inflammasome 
to attenuate neuroinflammation and neuronal apoptosis in the 
aged brain. KXS reduces NLRP3 expression and lowers the 
immune responses to aggregated Aβ and hyperphosphorylated 

Figure 3: Co‑regulated genes involved in AD and metabolic disorders. (a) The intersections in TCM targets, AD‑associated genes, and metabolic disease‑associated genes 
are shown in red. The hub genes are listed in the tables. (b) PPI analysis of selected compound targets is shown, with edges between proteins presenting different weights 
of relationships. PPI: Protein‑protein interaction, AD: Alzheimer’s disease, TCMs: Traditional Chinese medicine
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tau, thereby reducing inflammatory cytokine maturation and 
secretion. KXS targets disclosed in preprint data by  Yang 
et al. [67] (Preprint, https://doi.org/10.21203/rs.3.rs-966634/v1) 
are used to discover the intersection of genes associated with 
AD and metabolic disorders  [Figure  3]. Vann diagrams show 
that 17 diabetes, 13 hypertension, and 5 atherosclerosis‑related 
KXS targets overlap with AD‑related genes, respectively.

Traditional Chinese medicine targets in metabolic 
pathways

Network pharmacology of TCM provides a broad 
perspective on “drug‑disease‑gene” associations. We summarize 
these genes based on reported data and genetic databases and 
obtained some noteworthy information. Among the TCM 
prescriptions reviewed here, many targeted genes are involved 
in lipid metabolism  (ABCA1, ALDH2, ESR1, HMGCR, 
PPARA, PPARG, and RBP4). Several other genes regulate 
glucose metabolism  (DPP4), oxidative stress  (NOS1/2/3), tau 
metabolism  (PTPN1), inflammation  (TNF, PTGS2), and drug 
metabolism. Cytochrome P450 enzymes (CYP19A1, CYP2D6, 
and CYP2E1) are involved in drug metabolism and regulate 
levels of biological molecules, such as neurotransmitters 
and steroids, and neurotoxins  [68]. Due to polymorphisms 
in the promoters of CYPs, patients have different levels 
of CYPs and are known to have different susceptibilities to 
neurotransmission, neurotoxicity, and drugs. Previous studies 
have reported that DSS and TMGT extracts regulate CYP 
activity and expression in blood and hepatocytes  [69,70]. 
Elevated CYP activity can lead to adverse reactions to other 
drugs caused by drug‑drug interaction. Therefore, how 
TCM administration affects the CYPs to modulate neuronal 
activation, receptor activation, and drug response remains to 
be investigated in AD.

Defects in fatty acid sensors encoded by PPARA and 
PPARG result in inefficient lipid oxidation, reduced lipid 
storage, and low glucose utilization leading to lipotoxicity, 
which is a risk for AD  [71]. Transcriptomics analysis of 
PPARA and PPARG reveals their regulation on metabolic 
pathways, choline/dopamine signaling pathways, and Aβ 
metabolism  [48]. Numerous active compounds extracted from 
herbs have been discovered as PPAR activators  [72]. Some of 
these compounds, such as quercetin, linolenic acid, kaempferol, 
and ginsenoside, are present in the TCM prescriptions 
discussed here. Researchers can use the analytic information 
from database to further predict unknown links between 
biological regulation and AD‑associated pharmacology.

DSS drug‑target network analysis data show that 
kaempferol binds to PPARγ and has other 47 targets  (target 
degree D  =  47), 8  (AKR1B1, ALOX5, CYP19A1, CYP2D6, 
ESR1, GSTP1, MAPK10, and TP53) of which are associated 
with diabetes and AD  [Figure  3]. The connections of these 
8 genes are revealed by weighing each protein using PPI 
analysis. Inhibition of aldose reductase encoded by AKR1B1 
prevents memory loss in diabetic rats  [73]. It is attributed 
to attenuating the conversion of glucose to fructose, thereby 
reducing the consumption of antioxidants, inflammation, and 
the production of oxidative stress. Triple transgenic AD mice 
have reduced inhibition on CDK5 activity due to low levels 

of GSTP1‑encoded glutathione S‑transferase P1, resulting in 
increased phosphorylated tau [74].

Quercetin, a bioactive compound widely distributed in 
many herbal medicines  (including herbal constituents in DSS 
and TMGT), inhibits the activities of acetylcholinesterase, 
beta‑secretase‑1, and GSK3β. As a result, Aβ deposition and 
tauopathies are reduced, and synaptic function is improved 
in AD brains  [41]. PPI network analysis reveals that the 
interactions between quercetin‑targeted AD‑related genes 
are also implicated in diabetes  [Figure  3]. Quercetin targets 
MPO‑encoded myeloperoxidase, whose plasma levels are 
elevated in AD patients [75]. When myeloperoxidase is absent 
in a 5xFAD transgenic mouse model of AD, the mice present 
improved cognitive behavior, reduced inflammation, and 
APOE expression in the brain  [76]. The potent peroxidative 
activity of myeloperoxidase is essential for defense against 
infection, but oxidative metabolites also increase, which is 
a risk for AD. Herbs are a rich source of MPO inhibitors 
developed for AD treatment. Not only quercetin but also other 
flavonoids, polyphenols, alkaloids, and anthraquinones were 
found as potential MPO inhibitors  [77].  While experimental 
data on drug‑targeted MPO have been determined, direct 
evidence of the “drug‑MPO‑AD” interaction remains to be 
completed.

Following this analytic procedure  [Figures  2 and 3], 
predicted AD‑related metabolic genes could be selected to 
match the corresponding bioactive compounds obtained from 
TCM databases. The shared targets of different compounds, 
such as ALOX5 for kaempferol and quercetin shown in 
Figure  3, can be pointed out to act as potential targets of 
TCM for AD treatment. Therefore, PPI analysis uncovers 
hidden or indirect targets of drugs and reveals relationships 
or interactions between TCM compounds. It provides a 
reasonable basis for researchers to analyze the synergistic 
effects of TCM on AD.

There are some limitations in predicting active compounds 
and underlying mechanisms targeting AD‑related genes using 
network pharmacology. Target prediction may be inaccurate 
due to intermediate metabolites of the drug. The theoretical 
basis for molecular docking does not provide sufficient 
information about the effects of the drugs on target activity. 
Highly bypassed and complex regulation in metabolism may 
impact functional predictions and neglect drug side effects. 
Therefore, further experimental validation of potential active 
ingredients is required to demonstrate their theoretical 
functions in metabolic pathways related to AD pathology.

Conclusion
A systemic approach for identifying the meta‑interaction of 

drugs with genes is a powerful tool for studying the various 
compounds in herbal medicines. Based on chemical analysis 
and disease gene databases, we can make connections based 
on computational algorithms, group these disease‑related drug 
targets, and then perform enrichment pathway analysis to 
demonstrate the likely functions of compounds in organisms. 
This approach is a broad, rapid, and cost‑effective assay for 
acquiring primary information on drug‑regulated metabolic 
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pathways relevant to disease pathogenesis. Experimental 
designs based on this prediction can be more efficient and 
reveal more detailed information about disease pathogenicity.
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