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Abstract
Hematopoietic stem cell (HSC) transplantation has been used to treat hematopoietic diseases 
for over 50 years. HSCs can be isolated from bone marrow (BM), umbilical cord blood, or 
peripheral blood. Because of lower costs, shorter hospitalization, and faster engraftment, 
peripheral blood has become the predominant source of HSCs for transplantation. The 
major factors determining the rate of successful HSC transplantation include the degree 
of human leukocyte antigen matching between the donor and recipient and the number of 
HSCs for transplantation. Administration of granulocyte colony-stimulating factor (G-CSF) 
alone or combined with plerixafor (AMD3100) are clinical used methods to promote 
HSC mobilization from BM to the peripheral blood for HSC transplantations. However, 
a significant portion of healthy donors or patients may be poor mobilizers of G-CSF, 
resulting in an insufficient number of HSCs for the transplantation and necessitating 
alternative strategies to increase the apheresis yield. The detailed mechanisms underlying 
G-CSF-mediated HSC mobilization remain to be elucidated. This review summarizes the 
current research on deciphering the mechanism of HSC mobilization.
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transplantation [14]. Nevertheless, approximately 5%–10% of 
healthy donors and up to 40% of patients requiring autologous 
transplant are poor mobilizers of G-CSF [15-19]. However, 
it is challenging to identify such poor mobilizers [15]. To 
obtain a sufficient number of HSCs for transplantation, 
alternative strategies (such as larger volume leukapheresis, 
re-mobilization, the use of other mobilization agents, 
chemotherapy plus G-CSF, and BM harvesting) can be 
used [20]. A better understanding of how HSCs are mobilized 
from BM to peripheral blood can help in developing a more 
effective regimen for HSC transplantation. In this review, we 
discuss some known mechanisms of HSC mobilization.

Proteases released by neutrophils change 
hematopoietic stem cell retention in bone 
marrow

On G-CSF administration, neutrophils are activated and 
degranulated, releasing the serine proteases neutrophil elastase, 
cathepsin G (CG), dipeptidyl peptidase I (DPPI), and matrix 
metalloprotease 9. These proteases accumulate in BM and 

Introduction

Hematopoietic stem cells (HSCs) reside in the bone 
marrow (BM) niche. “Niche” was first proposed as a 

medical term by Schofield in 1978. The niche comprises 
various cells that support the microenvironment to prevent stem 
cell differentiation and maintain self-renewal capabilities [1]. 
Many cell types in BM, including nonhematopoietic and 
hematopoietic cells, form the niche network to regulate 
and retain HSCs in BM [2,3]. Autologous or allogeneic 
HSC transplantation has become a primary treatment for 
many hematopoietic diseases, such as sickle cell anemia, 
thalassemia, and hematological malignancies [4-10]. Sources 
of HSCs are BM, mobilized peripheral blood, and umbilical 
cord blood. Because of lower costs, a less invasive harvesting 
procedure, faster engraftment, higher HSC yields, and shorter 
hospitalization, mobilized peripheral blood has replaced BM 
as the routinely used source for HSC transplantation [11]. 
Successful HSC transplantation requires good matching of 
the human leukocyte antigen between the donor and recipient 
and a sufficient number of HSCs. After 4–5 days of treatment 
with granulocyte colony-stimulating factor (G-CSF), the 
number of HSCs in the peripheral blood increases by an 
average of 50–100 times [12,13]; thus, G-CSF represents 
the gold standard agent for mobilized peripheral blood HSC 
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allow for the degradation of molecules (vascular cell adhesion 
molecule 1 [VCAM-1], stromal-derived factor-1 [SDF-1, also 
called CXCL12], and c-Kit [CD117]), thus disrupting the 
interaction with very late antigen-4 (VLA-4), CXC chemokine 
receptor-4 (CXCR4), and stem cell factor, respectively. 
This disruption interaction between HSCs and niche cells 
leads to HSC mobilization [21-26] [Figure 1a and b]. The 
mobilization drug plerixafor (AMD3100) has a similar 
mechanism, plerixafor combined with G-CSF can enhance 
HSC mobilization by 2–3 times compared with G-CSF alone. 
Thus, plerixafor serves as a mobilization-enhancing agent 
when used together with other agents, especially in patients 
with lymphoma or myeloma who have been heavily pretreated 
with G-CSF [27,28]. Plerixafor binds to CXCR4 expressed on 

the HSCs, blocks the adhesion between HSCs and niche cells, 
and then mobilizes HSCs [28,29]. Compared with G-CSF, 
plerixafor-triggered HSC mobilization has clear mechanism. 
The interaction between Notch2 and its ligand also maintains 
HSC niche retention; Notch2-blocking antibodies sensitize 
HSCs to the mobilizing stimuli of G-CSF and plerixafor, 
resulting in a 3–4-fold increase in mobilization [30-32].

Reduction of stromal‑derived factor‑1 
expression in niche cells promotes 
hematopoietic stem cell mobilization

G-CSF activates the sympathetic neurons innervating 
BM by binding to the G-CSF receptors and then 

Figure 1: Granulocyte colony-stimulating factor stimulates hematopoietic stem cell mobilization by cleaving the retention axes, downregulating stromal-derived factor-1 
expression, opening the endothelial boundaries, and counteracting the function of CXC chemokine receptor-4 through erythroblasts-derived fibroblast growth factor 23. 
In the steady state, hematopoietic stem cells are located and retained in bone marrow through several retention axes, such as SCF/c-kit, vascular cell adhesion molecule 
1/VLA-4, and stromal-derived factor-1/CXC chemokine receptor-4 between hematopoietic stem cells and niche cells (a). Upon granulocyte colony-stimulating factor 
treatment, neutrophils secrete proteases, such as neutrophil elastase, cathepsin G, dipeptidyl peptidase I, and matrix metalloprotease 9, to cleave the retention axes (b). 
Granulocyte colony-stimulating factor induces sympathetic neurons to secrete noradrenaline and macrophages to secrete unknown factors to suppress stromal-derived 
factor-1 expression on the surface of niche cells (c). Granulocyte colony-stimulating factor increases CD26 on the surface of endothelial cells and then cleaves the N-terminal 
of NPY. Truncated NPY then binds the receptors on the surface of endothelial cells, downregulates VE-cadherin, and opens endothelial boundaries (d). Granulocyte 
colony-stimulating factor triggers erythroblasts to secrete fibroblast growth factor 23 and then counteract the function of CXC chemokine receptor-4 (e).
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releases noradrenaline to reduce SDF-1 expression 
(which binds to CXCR4 on the HSCs) on the osteoblasts 
and nestin+ mesenchymal stem cells through β2-and 
β3-adrenergic receptors, respectively [33-35]. G-CSF can also 
activate the macrophages in BM to release some unknown 
factors to suppress SDF-1 expression on the surface of 
osteoblasts and then promote HSC mobilization [33,36-38]. 
The SDF-1/CXCR4 axis retains HSCs in BM; downregulation 
of SDF-1 expression disrupts the retention axis and promotes 
the exit of HSCs from BM [Figure 1c].

Perturbation of the endothelial cell 
junctions results in increased permeability 
and hematopoietic stem cell mobilization

Following G-CSF administration, CD26 (also known as 
dipeptidylpeptidase-4) is increased on the sinusoidal endothelial 
cells, which become the gatekeepers at BM–peripheral blood 
interface and regulate hematopoietic cell trafficking [39]. 
CD26, a serine exopeptidase, cleaves N-terminal dipeptides 
of the full length of neuropeptide Y (NPY) to form NPY3-36. 
The truncated NPY preferentially binds to NPYR2 and 
NPYR5 instead of NPYR1. After binding, the tight junction 
element vascular endothelial cadherin (VE-cadherin) [40,41] 
is internalized and degraded, thus enhancing HSC 
transendothelial migration [42,43] [Figure 1d].

Fibroblast growth factor 23 secreted by 
erythroblasts promotes hematopoietic 
stem cell mobilization

The hormone fibroblast growth factor 23 (FGF-23), 
mainly secreted by osteoblasts and osteocytes, regulates 
phosphate homeostasis in the kidney[44] and suppresses 
erythropoiesis [45,46]. G-CSF can trigger erythroblasts in BM 
to release FGF-23 within the first 24 h of G-CSF administration. 
FGF-23 can counteract the function of CXCR4 and then 
mobilize HSCs [47,48] [Figure 1e].

Coupling of purinergic signaling, 
NOD‑like receptor family pyrin 
domain‑containing 3 inflammasome, 
and the complement cascade promotes 
hematopoietic stem cell mobilization

Accumulated studies have revealed that G-CSF can activate 
innate immune cells, including granulocytes and monocytes, 
to release extracellular adenosine triphosphate (eATP) in 
a pannexin-1 channel-dependent manner [49,50]. eATP 
subsequently activates the NOD-like receptor family pyrin 
domain-containing 3 (NLRP3) inflammasomes through 
P2X4 and P2X7 purinergic receptors on the surface of 
HSCs or innate immune cells [51-54]. Inflammasomes 
are caspase-1-containing protein complexes that promote 
inflammation [55-57]. The NLRP3 inflammasome is 
among the most widely studied inflammasome members; 
it comprises NLRP3, an apoptosis-associated speck-like 
protein containing a caspase recruitment domain (ASC), and 
pro-caspase-1 [58-60]. After its activation, pro-caspase-1 

becomes activated and cleaves pro-interleukin-1β (IL-1β) 
and pro-IL-18 to form IL-1β and IL-18 [60-63]. Activated 
caspase-1 can also cleave the gasdermin-D (GSDMD) protein; 
the N-terminal mature form of GSDMD (N-gasdermin) is 
oligomerized and inserted into the cell membrane to form 
pores for the release of IL-1β, IL-18 [64,65], and other 
danger-associated molecular patterns (DAMPs), such as 
high-mobility group box 1 (HMGB1) protein and S100 
calcium-binding protein A9 (S100A9) [66-70]. IL-1β or 
IL-18 may aid HSC mobilization because of the injection of 
the NLRP3 inflammasome activation mediators IL-1β- or 
IL-18-induced HSC mobilization in mice [49,50,71,72]. 
Other DAMPs (HMGB1 and S100A9) are recognized by 
mannan-binding lectin, which then activates the complement 
system through mannan-binding lectin–associated serine 
proteinase. The activated complement C5a then lyses the 
erythrocytes and releases sphingosine-1-phosphate (S1P) 
into the peripheral blood to attract the HSCs mobilized from 
BM [3,66,67,73-77] [Figure 2].

Pain‑sensing nerve cells (nociceptors) 
control hematopoietic stem cell 
mobilization

Nociceptors belonging to sensory neurons can sense pain. 
These neurons have been well investigated in barrier tissues, 
such as the skin and gut [78]; however, their biological 
role in nonbarrier tissues, such as BM remains unknown. 
Recently, a study demonstrated that BM nociceptors can 
be stimulated by G-CSF to release the neurotransmitter 

Figure 2: Granulocyte colony-stimulating factor induces hematopoietic stem cell 
mobilization by activating inflammasome and complement systems. Granulocyte 
colony-stimulating factor triggers monocytes and granulocytes to release eATP, 
which binds P2X4 or P2X7 on the surface of hematopoietic stem cells or innate 
immune cells to activate the NLRP3 inflammasome. Interleukin-1β, interleukin-18, 
and danger-associated molecular patterns are released through the pores formed by 
GSDMD. Danger-associated molecular patterns activate complement C5, releasing 
S1P from mature erythrocytes. Interleukin-1β, interleukin-18, and S1P together 
promote hematopoietic stem cell mobilization.
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molecule calcitonin-gene-related peptide (CGRP) [78]. The 
administration of CGRP combined with G-CSF greatly 
improved HSC mobilization. CGRP binds directly to 
HSCs through a receptor dimer comprising the calcitonin 
receptor-like receptor (CALCRL) and receptor activity 
modifying protein 1 (RAMP1) and then mobilizes HSCs 
by activating downstream Gαs–adenylyl cyclase–cAMP 
signaling [79,80] [Figure 3]. Notably, feeding mice with 
capsaicin can stimulate the nociceptors to release CGRP and 
mobilize HSCs [79,80] [Figure 3].

Conclusions
G-CSF–triggered HSC mobilization is a complex process 

involving many mechanisms and niche cells, such as 
neutrophils, macrophages, sympathetic neurons, mesenchymal 
stem cells, osteoblasts, sinusoidal endothelial cells, 
granulocytes, monocytes, nociceptors, and erythroblasts. Other 
mechanisms remain to be discovered. For individuals who are 
poor mobilizers of G-CSF, a comprehensive understanding 
of the mechanisms underlying HSC mobilization is crucial 
to minimize HSC transplantation failure due to insufficient 
HSC mobilization. Researchers must attempt to develop a 
fast, accurate, sensitive, and simple screening method for 
identifying poor mobilizers and establish a new regimen for 
HSC mobilization.
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