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ABSTRACT

Hematopoietic stem cell (HSC) transplantation has been used to treat hematopoietic diseases
for over 50 years. HSCs can be isolated from bone marrow (BM), umbilical cord blood, or
peripheral blood. Because of lower costs, shorter hospitalization, and faster engraftment,
peripheral blood has become the predominant source of HSCs for transplantation. The
major factors determining the rate of successful HSC transplantation include the degree
of human leukocyte antigen matching between the donor and recipient and the number of
HSCs for transplantation. Administration of granulocyte colony-stimulating factor (G-CSF)
alone or combined with plerixafor (AMD3100) are clinical used methods to promote
HSC mobilization from BM to the peripheral blood for HSC transplantations. However,
a significant portion of healthy donors or patients may be poor mobilizers of G-CSF,
resulting in an insufficient number of HSCs for the transplantation and necessitating
alternative strategies to increase the apheresis yield. The detailed mechanisms underlying
G-CSF-mediated HSC mobilization remain to be elucidated. This review summarizes the

current research on deciphering the mechanism of HSC mobilization.
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INTRODUCTION

ematopoietic stem cells (HSCs) reside in the bone

marrow (BM) niche. “Niche” was first proposed as a
medical term by Schofield in 1978. The niche comprises
various cells that support the microenvironment to prevent stem
cell differentiation and maintain self-renewal capabilities [1].
Many cell types in BM, including nonhematopoictic and
hematopoietic cells, form the niche network to regulate
and retain HSCs in BM [2,3]. Autologous or allogeneic
HSC transplantation has become a primary treatment for
many hematopoietic diseases, such as sickle cell anemia,
thalassemia, and hematological malignancies [4-10]. Sources
of HSCs are BM, mobilized peripheral blood, and umbilical
cord blood. Because of lower costs, a less invasive harvesting
procedure, faster engraftment, higher HSC yields, and shorter
hospitalization, mobilized peripheral blood has replaced BM
as the routinely used source for HSC transplantation [11].
Successful HSC transplantation requires good matching of
the human leukocyte antigen between the donor and recipient
and a sufficient number of HSCs. After 4-5 days of treatment
with granulocyte colony-stimulating factor (G-CSF), the
number of HSCs in the peripheral blood increases by an
average of 50-100 times [12,13]; thus, G-CSF represents
the gold standard agent for mobilized peripheral blood HSC
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transplantation [14]. Nevertheless, approximately 5%—10% of
healthy donors and up to 40% of patients requiring autologous
transplant are poor mobilizers of G-CSF [15-19]. However,
it is challenging to identify such poor mobilizers [15]. To
obtain a sufficient number of HSCs for transplantation,
alternative strategies (such as larger volume leukapheresis,
re-mobilization, the use of other mobilization agents,
chemotherapy plus G-CSF, and BM harvesting) can be
used [20]. A better understanding of how HSCs are mobilized
from BM to peripheral blood can help in developing a more
effective regimen for HSC transplantation. In this review, we
discuss some known mechanisms of HSC mobilization.

PROTEASES RELEASED BY NEUTROPHILS CHANGE
HEMATOPOIETIC STEM CELL RETENTION IN BONE
MARROW

On G-CSF administration, neutrophils are activated and
degranulated, releasing the serine proteases neutrophil elastase,
cathepsin G (CG), dipeptidyl peptidase I (DPPI), and matrix
metalloprotease 9. These proteases accumulate in BM and
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allow for the degradation of molecules (vascular cell adhesion
molecule 1 [VCAM-1], stromal-derived factor-1 [SDF-1, also
called CXCL12], and c-Kit [CD117]), thus disrupting the
interaction with very late antigen-4 (VLA-4), CXC chemokine
receptor-4 (CXCR4), and stem cell factor, respectively.
This disruption interaction between HSCs and niche cells
leads to HSC mobilization [21-26] [Figure la and b]. The
mobilization drug plerixafor (AMD3100) has a similar
mechanism, plerixafor combined with G-CSF can enhance
HSC mobilization by 2-3 times compared with G-CSF alone.
Thus, plerixafor serves as a mobilization-enhancing agent
when used together with other agents, especially in patients
with lymphoma or myeloma who have been heavily pretreated

the HSCs, blocks the adhesion between HSCs and niche cells,
and then mobilizes HSCs [28,29]. Compared with G-CSF,
plerixafor-triggered HSC mobilization has clear mechanism.
The interaction between Notch2 and its ligand also maintains
HSC niche retention; Notch2-blocking antibodies sensitize
HSCs to the mobilizing stimuli of G-CSF and plerixafor,
resulting in a 3—4-fold increase in mobilization [30-32].

REDUCTION OF STROMAL-DERIVED FACTOR-1
EXPRESSION IN NICHE CELLS PROMOTES
HEMATOPOIETIC STEM CELL MOBILIZATION

G-CSF activates the sympathetic neurons innervating

with G-CSF [27,28]. Plerixafor binds to CXCR4 expressed on BM by binding to the G-CSF receptors and then
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Figure 1: Granulocyte colony-stimulating factor stimulates hematopoietic stem cell mobilization by cleaving the retention axes, downregulating stromal-derived factor-1
expression, opening the endothelial boundaries, and counteracting the function of CXC chemokine receptor-4 through erythroblasts-derived fibroblast growth factor 23.
In the steady state, hematopoietic stem cells are located and retained in bone marrow through several retention axes, such as SCF/c-kit, vascular cell adhesion molecule
1/VLA-4, and stromal-derived factor-1/CXC chemokine receptor-4 between hematopoietic stem cells and niche cells (a). Upon granulocyte colony-stimulating factor
treatment, neutrophils secrete proteases, such as neutrophil elastase, cathepsin G, dipeptidyl peptidase I, and matrix metalloprotease 9, to cleave the retention axes (b).
Granulocyte colony-stimulating factor induces sympathetic neurons to secrete noradrenaline and macrophages to secrete unknown factors to suppress stromal-derived
factor-1 expression on the surface of niche cells (¢). Granulocyte colony-stimulating factor increases CD26 on the surface of endothelial cells and then cleaves the N-terminal
of NPY. Truncated NPY then binds the receptors on the surface of endothelial cells, downregulates VE-cadherin, and opens endothelial boundaries (d). Granulocyte
colony-stimulating factor triggers erythroblasts to secrete fibroblast growth factor 23 and then counteract the function of CXC chemokine receptor-4 (e).
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releases noradrenaline to reduce SDF-1 expression
(which binds to CXCR4 on the HSCs) on the osteoblasts
and nestin® mesenchymal stem cells through [2-and
B3-adrenergic receptors, respectively [33-35]. G-CSF can also
activate the macrophages in BM to release some unknown
factors to suppress SDF-1 expression on the surface of
osteoblasts and then promote HSC mobilization [33,36-38].
The SDF-1/CXCR4 axis retains HSCs in BM; downregulation
of SDF-1 expression disrupts the retention axis and promotes
the exit of HSCs from BM [Figure 1c].

PERTURBATION OF THE ENDOTHELIAL CELL
JUNCTIONS RESULTS IN INCREASED PERMEABILITY
AND HEMATOPOIETIC STEM CELL MOBILIZATION

Following G-CSF administration, CD26 (also known as
dipeptidylpeptidase-4) is increased on the sinusoidal endothelial
cells, which become the gatekeepers at BM—peripheral blood
interface and regulate hematopoietic cell trafficking [39].
CD26, a serine exopeptidase, cleaves N-terminal dipeptides
of the full length of neuropeptide Y (NPY) to form NPY, ..
The truncated NPY preferentially binds to NPYR2 and
NPYRS instead of NPYRI1. After binding, the tight junction
element vascular endothelial cadherin (VE-cadherin) [40,41]
is internalized and degraded, thus enhancing HSC
transendothelial migration [42,43] [Figure 1d].

FIBROBLAST GROWTH FACTOR 23 SECRETED BY
ERYTHROBLASTS PROMOTES HEMATOPOIETIC
STEM CELL MOBILIZATION

The hormone fibroblast growth factor 23 (FGF-23),
mainly secreted by osteoblasts and osteocytes, regulates
phosphate homeostasis in the kidney[44] and suppresses
erythropoiesis [45,46]. G-CSF can trigger erythroblasts in BM
to release FGF-23 within the first 24 h of G-CSF administration.
FGF-23 can counteract the function of CXCR4 and then
mobilize HSCs [47,48] [Figure le].

COUPLING OF PURINERGIC SIGNALING,
NOD-LIKE RECEPTOR FAMILY PYRIN
DOMAIN-CONTAINING 3 INFLAMMASOME,
AND THE COMPLEMENT CASCADE PROMOTES
HEMATOPOIETIC STEM CELL MOBILIZATION

Accumulated studies have revealed that G-CSF can activate
innate immune cells, including granulocytes and monocytes,
to release extracellular adenosine triphosphate (eATP) in
a pannexin-1 channel-dependent manner [49,50]. eATP
subsequently activates the NOD-like receptor family pyrin
domain-containing 3 (NLRP3) inflammasomes through
P2X4 and P2X7 purinergic receptors on the surface of
HSCs or innate immune cells [51-54]. Inflammasomes
are caspase-l-containing protein complexes that promote
inflammation  [55-57]. The NLRP3 inflammasome is
among the most widely studied inflammasome members;
it comprises NLRP3, an apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC), and
pro-caspase-1 [58-60]. After its activation, pro-caspase-1
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becomes activated and cleaves pro-interleukin-1f (IL-1p)
and pro-IL-18 to form IL-1f and IL-18 [60-63]. Activated
caspase-1 can also cleave the gasdermin-D (GSDMD) protein;
the N-terminal mature form of GSDMD (N-gasdermin) is
oligomerized and inserted into the cell membrane to form
pores for the release of IL-1(B, IL-18 [64,65], and other
danger-associated molecular patterns (DAMPs), such as
high-mobility group box 1 (HMGBI1) protein and S100
calcium-binding protein A9 (S100A9) [66-70]. IL-18 or
IL-18 may aid HSC mobilization because of the injection of
the NLRP3 inflammasome activation mediators IL-13- or
IL-18-induced HSC mobilization in mice [49,50,71,72].
Other DAMPs (HMGBI1 and S100A9) are recognized by
mannan-binding lectin, which then activates the complement
system through mannan-binding lectin—associated serine
proteinase. The activated complement C5a then lyses the
erythrocytes and releases sphingosine-1-phosphate (S1P)
into the peripheral blood to attract the HSCs mobilized from
BM [3,66,67,73-77] [Figure 2].

PAIN-SENSING NERVE CELLS (NOCICEPTORS)
CONTROL HEMATOPOIETIC STEM CELL
MOBILIZATION

Nociceptors belonging to sensory neurons can sense pain.
These neurons have been well investigated in barrier tissues,
such as the skin and gut [78]; however, their biological
role in nonbarrier tissues, such as BM remains unknown.
Recently, a study demonstrated that BM nociceptors can
be stimulated by G-CSF to release the neurotransmitter
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Figure 2: Granulocyte colony-stimulating factor induces hematopoietic stem cell
mobilization by activating inflammasome and complement systems. Granulocyte
colony-stimulating factor triggers monocytes and granulocytes to release ¢ATP,
which binds P2X4 or P2X7 on the surface of hematopoietic stem cells or innate
immune cells to activate the NLRP3 inflammasome. Interleukin-1p, interleukin-18,
and danger-associated molecular patterns are released through the pores formed by
GSDMD. Danger-associated molecular patterns activate complement C5, releasing
S1P from mature erythrocytes. Interleukin-1f, interleukin-18, and S1P together
promote hematopoietic stem cell mobilization.



[Downloaded free from http://www.tcmjmed.com on Thursday, July 7, 2022, IP: 118.163.42.220]

Chang, et al. / Tzu Chi Medical Journal 2022; 34(3): 270-275

molecule calcitonin-gene-related peptide (CGRP) [78]. The
administration of CGRP combined with G-CSF greatly
improved HSC mobilization. CGRP binds directly to
HSCs through a receptor dimer comprising the calcitonin
receptor-like receptor (CALCRL) and receptor activity
modifying protein 1 (RAMPI) and then mobilizes HSCs
by activating downstream Go—adenylyl cyclase-cAMP
signaling [79,80] [Figure 3]. Notably, feeding mice with
capsaicin can stimulate the nociceptors to release CGRP and
mobilize HSCs [79,80] [Figure 3].

CONCLUSIONS

G-CSF-triggered HSC mobilization is a complex process
involving many mechanisms and niche cells, such as
neutrophils, macrophages, sympathetic neurons, mesenchymal
stem cells, osteoblasts, sinusoidal endothelial cells,
granulocytes, monocytes, nociceptors, and erythroblasts. Other
mechanisms remain to be discovered. For individuals who are
poor mobilizers of G-CSF, a comprehensive understanding
of the mechanisms underlying HSC mobilization is crucial
to minimize HSC transplantation failure due to insufficient
HSC mobilization. Researchers must attempt to develop a
fast, accurate, sensitive, and simple screening method for
identifying poor mobilizers and establish a new regimen for
HSC mobilization.
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