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Abstract
Metabolic regulations play vital roles on maintaining the homeostasis of our body. 
Evidence have suggested that ATF3 and nuclear factor erythroid 2–related factor 2 (NRF2) 
are critical for maintaining cell function, metabolism, and inflammation/anti-inflammation 
regulations when cells are under stress, while the upstream regulators in the stressed cells 
remain elusive. Recent findings have shown that tricarboxylic acid cycle metabolites such 
as itaconate and succinate are not just mitochondrial metabolites, but rather important 
signaling mediators, involving in the regulations of metabolism, immune modulation. 
Itaconate exerts anti-inflammatory role through regulating ATF3 and NRF2 pathways 
under stressed conditions. In addition, itaconate inhibits succinate dehydrogenase, succinate 
oxidation and thus blocking succinate-mediated inflammatory processes. These findings 
suggest itaconate-ATF3 and itaconate-NRF2 axes are well-coordinated machineries that 
facilitate the rescue against cellular stress. Here, we review these fascinating discoveries, a 
research field may help the development of more effective therapeutic approach to manage 
stress-induced inflammation, tissue damage, and metabolic disorder.
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feedback regulating factor that limits excessive inflammation. 
Itaconate derivatives, such as 4-Octyl itaconate (4-OI), 
inhibit aerobic glycolysis by targeting glycolytic enzyme 
glyceraldehyde 3-phosphate dehydrogenase, interferon and 
inflammasome to exert anti-inflammatory effects [12,13]. 
Overall, these studies highlight that itaconate is not just a 
mitochondria metabolite but rather an important signaling 
molecule involved in the regulations of metabolism, immune 
modulation, and gene expression [Figure 1] [1,3-9].

Anti‑inflammatory effects of itaconate 
derivatives

Anti-inflammatory effects of itaconate have been associated 
with inhibition succinate dehydrogenase (SDH) [Figure 1] [10,14], 
and down-regulation of inflammasome and pro-inflammatory 
cytokines [5,10]. The 4-OI is a most studied itaconate derivative, 
displaying anti-inflammatory effects [12,13,15]. For example, 
4-OI reduced the activity of pro-inflammatory cytokine IL-1β 
in LPS-treated mouse and human macrophages and rescued 

Itaconate is a metabolite conducting 
cellular signaling and modulating immune 
response

T o release energy through the oxidation of organic 
compounds, the tricarboxylic acid (TCA) cycle (also 

known as citric acid cycle or Krebs cycle), is a series of 
chemical reactions involving metabolites with cellular signaling 
properties [1]. Those microRNAs regulating the metabolic 
pathways are thus influence the inflammation outcomes [2]. TCA 
cycle metabolites, including itaconate, succinate, α-ketoglutarate, 
2-hydroxyglutarate, fumarate, were shown to exert various 
cellular signaling properties [1,3-9]. Among these, itaconate, a 
metabolite with anti-inflammatory property, is derived from the 
decarboxylation of TCA cycle intermediate cis-aconitate [1]. 
The immune-responsive gene 1 protein (IRG1) is the enzyme 
responsible for itaconate production. Lipopolysaccharide (LPS) 
induces IRG1 to result the accumulation of itaconate, which 
subsequently reduces interleukin (IL)-1β production [1]. IRG1 
deficiency in mice led to the elevation of pro-inflammatory 
cytokines interleukin (IL)-1β, IL-18, IL-6, IL-12 production 
during macrophage activation by LPS treatments [10]. IRG1 
deficiency also led to increased mortality and lung inflammation 
in a mouse model of Mycobacterium tuberculosis infection [11]. 
These results suggest that itaconate is critical infection-induced 
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LPS injection-induced mortality in mice [15]. Treatments of 
4-OI ameliorated LPS-stimulated pro-inflammatory cytokines 
IL-1β, IL-6, and tumor necrosis factor (TNF)-α production in 
human peripheral blood mononuclear cells (PBMCs) and THP-1 
macrophages is associated with the activation of the nuclear 
factor erythroid 2–related factor 2 (NRF2) pathway [16]. Such 
4-OI-mediated NRF2–dependent anti-inflammation can also 
limit the expression of type I interferon (IFN) [17]. These results 
collectively suggested that itaconate is an anti-inflammatory 
metabolite. In addition to 4-OI, some other itaconate derivatives 
were found to have more or less anti-inflammatory and 
immune-modulating effects. For example, evidence have shown 
that both dimethyl itaconate and 4-octyl itaconate induce 
immunosuppressive phenotypes in an NRF2-independent manner, 
which associated with inhibited IκBζ and pro-interleukin (IL)-1β 
induction, as well as pro-inflammatory cytokines IL-6, and 
interferon-β secretion [13].

Itaconate‑induced anti‑inflammatory ATF3 
pathway

Recently, it is shown that itaconate conducts 
anti-inflammatory effects primarily mediating through at least 
3 downstream pathways: Pathway 1, Cyclic AMP-dependent 
transcription factor (ATF3); pathway 2, NRF2 [9]; pathway 3, 
itaconate-mediated inhibition on inflammasome-IL-1 axis [5].

ATF3 is an anti-inflammatory, basic region-leucine 
zipper (bZip) DNA binding domain containing transcription 
factors [18]. By forming dimers with ATF3-itself and various 
other bZip proteins, such as ATF2, c-Jun, JunB, and JunD, ATF3 
can function as a transcriptional activator or repressor [19,20]. 
Evidence have suggested that ATF3 plays a role in a variety 

of biological processes, such as metabolism [20,21], cell 
motility [22], cell cycle [23], DNA repair [24], cell death [25], 
and various functions on maintaining the homeostasis [26-37]. 
ATF3 can be up-regulated by stimulations from wide spectrum 
of toll-like receptors (TLRs), including TLR4, 2/6, 3, 5, 
7, and 9, and serves as a negative feedback regulator [38]. 
For example, ATF3 limits the release of pro-inflammatory 
cytokine high mobility group box 1, which results in lung 
injury after LPS challenge [33]. ATF3 also limits LPS-induced 
chemokine (C-X-C motif) ligand 1 production in mouse 
airways [22]. Basal and LPS-stimulated chemokine (C-C 
motif) ligand 4 (CCL4) mRNA and protein levels are higher 
in the bone-marrow-derived macrophages (BMDMs) of 
ATF3 deficient (ATF3−/−) mice compared with those of wild 
type (ATF3+/+) mice [39]. Consistently, primary macrophages 
from ATF3−/− mice exhibit increased production of IL-6 and 
IL-12p40 cytokines following TLR activation [38]; LPS 
induces higher IL-6 and IL-12 mRNA levels in BMDMs of 
ATF3−/− mice [40]. Such anti-inflammatory effect of ATF3 is 
in part mediating through the interact with histone deacetylase 
1, leading to histone deacetylation and suppression of IL-6 and 
IL-12b promoter activity in LPS-treated macrophages [40]. 
Accordingly, ATF3 was suggested negatively regulating the 
gene expression of those pr-oinflammatory cytokines containing 
ATF/CREB binding sites [40]. Additionally, comparisons 
of wild type and gene knockout mice, evidence have shown 
that dimethyl itaconate (DI) inhibits LPS-mediated IκBζ 
induction in mouse BMDMs and ameliorates IL-17-mediated 
IκBζ induction, and associated psoriatic pathology in mice 
in an ATF3-dependent but NRF2-independent manner [41]. 
These results revealed that the itaconate-ATF3 axis exerts an 
anti-inflammatory role.

In addition to inflammation, mitochondrial stress also 
induces ATF3 expression [42]. ATF3 was shown to involve 
in adipocyte hypoxia-mediated mitochondrial regulation [43]. 
Inhibition of ATF3 expression increased mitochondrial 
stress and induced cytochrome C release [44]. In addition, 
ATF3 suppresses PTEN-induced putative kinase 1 gene 
expression in lung epithelial cells to control mitochondrial 
homeostasis [45]. In other words, itaconate is a native ATF3 
inducer, which couples to metabolic regulation.

Itaconate and nuclear factor erythroid 
2–related factor 2 pathway

NRF2 is an anti-oxidative stress and anti-inflammatory, 
bZip DNA binding domain-containing transcription 
factor [46]. Itaconate is transported from the mitochondria 
to the cytoplasm, where it shows its functions via the 
carriers that transport dicarboxylate and citrate [15]. In 
the cytosol, itaconate uses its electrophilic α,β-unsaturated 
carboxylic acid to alkylate the cysteine residues on Kelch-like 
ECH-associated protein-1 (KEAP1) that normally binds and 
promotes proteasome degradation of NRF2 [15]. Similar 
to the modification of cysteines by fumarate itaconate 
activates NRF2 by alkylation of KEAP1 cysteine residues. 
Because 4-OI stabilized V5-tagged NRF2 (NRF2–V5) in 
COS1 cells co-expressing wild-type KEAP1 but not a cysteine 
151 (Cys151)-Ser mutant, Cys151 is a sensor on KEAP1 for 

Figure 1: Itaconate-induced cell protective anti-stress responses. Inflammatory 
stimulus such as LPS upregulates the expression of CAD (also known as IRG1), 
an enzyme converts cis-aconitate to itaconate in the mitochondria [4]. LPS-induced 
cellular activation leads to glycolytic flux and the transition towards an anaplerotic 
TCA cycle with high production levels of itaconate [9]. High itaconate levels 
suppress SDH, blocking succinate-mediated inflammatory processes and inducing 
the anti-inflammatory proteins NRF2 and cyclic ATF3 [9]. Succinate may 
enhance proinflammatory cytokine IL-1β pathway through SUCNR1 [3]. Those 
blue labels indicate the anti-inflammatory and anti-oxidative-stress responses; 
those red labels indicate proinflammatory responses. LPS: Lipopolysaccharide, 
CAD: Cis-aconitate decarboxylase, IRG1: Immune-responsive gene 1, 
SDH: Succinate dehydrogenase, NRF2: Nuclear factor erythroid 2-related factor 
2, ARF3: AMP-dependent transcription factor 3, SUCNR1: Succinate receptor 1, 
IDH: Isocitrate dehydrogenase
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itaconate [15]. KEAP1 alkylation allows newly synthesized 
NRF2 to accumulate and translocate into the nucleus to activate 
the anti-oxidant and anti-inflammatory gene expression [6]. 
Accordingly, itaconate is a native NRF2 inducer, which 
couples to metabolic regulation. By binding to the promoters, 
NRF2 inhibits the expression of pro-inflammatory genes 
IL-1β and IL-6 [47]. Similarly, the itaconate derivative 4-OI 
activates NRF2 signaling to inhibit pro-inflammatory cytokine 
production in PBMCs [16].

Itaconate and succinate‑inflammasome‑il‑1 
axis

Immune system defenses against external stimulations and 
pathogen invasions [48-57], in which the inflammasome-IL-1 
axis exerts critical role on the induction of inflammation in 
various conditions [58-70]. Itaconate was demonstrated to 
inhibit SDH, and subsequently succinate oxidation and thus 
blocking succinate-mediated inflammatory processes [10,14]. 
Succinate was shown to induced the pro-inflammatory IL-1 
pathway through succinate receptor 1 [71]. By contrast, 
itaconate and 4-OI specifically inhibited NLRP3 activation, 
but not AIM2 or NLRC4 inflammasomes [5]. Conversely, 
NLRP3 activation was increased in itaconate-depleted Irg1−/− 
macrophages [5]. In addition, 4-OI inhibited NLRP3-dependent 
IL-1β release from PBMCs isolated from cryopyrin-associated 
periodic syndrome patients, and reduced inflammation in an 
in vivo model of urate-induced peritonitis [5]. These results 
suggest a negative role of itaconate on inflammation.

Metabolic brake model
For easier explanation, here we postulate a simplified 

model, in which itaconate-ATF3 and itaconate-NRF2 axis 
are critical metabolic brakes on maintaining metabolic 
homeostasis to achieve anti-inflammation and tissue 
repair [Figure 2]. When cells are under inflammation, 
metabolic overload, itaconate levels are increased [Figure 1], 
by which metabolic brakes-induced physiological metabolic 
brake responses exert ameliorative roles to reduce metabolic 
stress (e.g., inflammation, metabolic diseases, tissue 
damages)-elicited adverse effects. Thus, without ATF3, 
other molecular brake become more rapidly wore down by 
stresses [Figure 2].

Conclusions
Because NRF2 and its principal negative regulator 

KEAP1 are critical in the maintenance of redox, metabolic, 
and inflammation, the activators and inhibitors of NRF2 
have been considered as therapeutic agents in chronic 
diseases [72-74]. Similarly, cardiac ATF3 exerts a protective 
role on the amelioration of high fat diet-induced cardiac 
remodeling processes [75]. Overexpression of ATF3 induced 
the trans-differentiation of white adipocytes into beige/brown 
adipocytes in vitro [76]. Chemical ATF3 inducer sulfuretin 
counteracts weight gain and improves glucose tolerance in an 
ATF3 dependent manner, indicating that ATF3 induction can 
be a molecular target for preventing obesity and metabolic 
diseases [77]. It is also shown that ST32da, a chemically 
synthesized ATF3 inducer, enhances ATF3 expression to inhibit 

lipogenesis and promote adipocyte browning by inhibiting 
the carbohydrate-responsive element-binding protein–
stearoyl-CoA desaturase-1 axis [76]. Accordingly, ATF3 is 
considered a therapeutic target for obesity and metabolic 
diseases [18,75-77]. Evidence described collectively suggest 
that itaconate derivatives may be used as therapeutic agents 
and the pathway-associated factors ATF3 and NRF2 may be 
served as therapeutic targets on the management of metabolic 
stress-associated diseases. New discoveries in this field may 
help the development of more effective therapeutic approach 
to manage stress-induced inflammation, tissue damages, and 
metabolic disorders.
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