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Abstract
In both normal and tumor tissues, receptor tyrosine kinases (RTKs) may be pleiotropically 
expressed. The RTKs not only regulate ordinary cellular processes, including proliferation, 
survival, adhesion, and migration, but also have a critical role in the development of 
many types of cancer. The Tyro3, Axl, and MerTK (TAM)  family of RTKs (Tyro3, Axl, 
and MerTK) plays a pleiotropic role in phagocytosis, inflammation, and normal cellular 
processes. In this article, we highlight the cellular activities of TAM receptors and discuss 
their roles in cancer and immune cells. We also discuss cancer therapies that target TAM 
receptors. Further research is needed to elucidate the function of TAM receptors in immune 
cells toward the development of new targeted immunotherapies for cancer.
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located on chromosome 19q13.2 and was cloned in 1991 [6]. 
The next TAM family receptor to be identified was v‑ryk, iso-
lated from the avian retrovirus RLP30 [7], followed by cloning 
of the human analog c‑Mer. Expression of c-Mer is found in 
monocytes and epithelial and reproductive tissues [8]. An alias 
of Mer is Mer tyrosine kinase (MerTK), located on human 
chromosome 2q14.1 [9]. Murine Tyro3 [10] and the human 
analog Tyro3, located on chromosome 15q15 [11], were cloned 
in 1993. Tyro3 and Axl each have 20 same-sized exons [12], 
while Mer is encoded by 19 exons [13]. In the tyrosine kinase 
domain, Mer and Axl share the most similar amino acid 
sequences [14]. Human TAM receptors share approximately 
34% and 57% amino acid sequence identity within the coding 
regions  for the extracellular and intracellular domains, respec-
tively, resulting in high homology in the intracellular tyrosine 
kinase domain [15]. However, the actual molecular weights of 
TAMs differ from the predicted protein size due to posttransla-
tional modifications, including ubiquitination, phosphorylation, 
and glycosylation [6,12,16,17]. These modifications may cause 
cell- and tissue-type-specific alterations in the regulation of 
TAM receptor function.

Introduction

T he Tyro3, Axl, and MerTK (TAM) proteins belong to 
the receptor tyrosine kinase (RTK) subclass of protein 

kinases. TAMs are ligand-activated transmembrane pro-
teins that mediate signal transduction from an extracellular 
receptor through the cytoplasm to the nucleus and trigger 
expression of various oncogenes [1]. Many tyrosine kinase 
inhibitors (TKIs) have been synthesized for cancer treat-
ment, and several inhibitors of TAM receptors have been 
developed for various cancers. The TAM receptors have 
similar domain structures and functions. Unlike other RTKs, 
TAM receptors play important roles in tissue conservation, 
inflammation, and phagocytosis, as well as in cell devel-
opment, growth, migration, and survival [2,3]. Thus, the 
deregulation of TAM signaling is linked to various autoim-
mune diseases and cancers. In this review, we discuss the 
structure and function of TAM receptors and the roles of 
their ligands, growth arrest-specific 6 (Gas6), and protein 
S (ProS) [4]. We also explore the role of TAM receptors in 
immune cell function and in cancer development. Finally, 
we discuss TAM receptor inhibitors and their potential roles 
in the development of new cancer therapies.

Cloning and genomic structure of Tyro3, 
Axl, and MerTK receptors

Axl was first discovered as a transforming gene in chronic 
myelogenous leukemia (CML) patients in 1988 [5]. Axl is 
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Tyro3, Axl, and MerTK receptor protein 
structure and associated ligands

TAM receptors are RTKs that are widely expressed 
in the nervous, immune, vascular, and reproductive 
systems and regulate cell growth, survival, differentiation, 
adhesion, and motility. TAM receptors contain two immu-
noglobulin (Ig)-like domains, two type III fibronectin (FN 
III) domains within the extracellular domain, and one con-
served KW (I/L) A (I/L) ES sequence within the intracellular 
domain [Figure 1a] [1]. TAM receptor ligands include Vitamin 
K-dependent Gas6 and ProS, which have similar domain 
structures, such as a C-terminal sex hormone-binding globu-
lin, four epidermal growth factor (EGF)-like repeats, and an 
N-terminal γ–carboxyglutamic acid (Gla)-rich domain. Gas6 
and ProS demonstrate Ca2+-dependent binding to phospha-
tidylserine (PtdSer)-presenting cell membranes carrying a 
negative charge, and these protein ligands share 43% amino 
acid sequence identity [18]. In apoptotic cells, the binding of 
TAM receptor dimers occurs via interaction with paired Gas6 
or ProS molecules bound to the interacting cell membrane via 
PtdSer, thereby forming a tetrameric complex [Figure 1b]. 
Gas6 can interact with all TAM receptors, while ProS binds 
MerTK and Tyro3 only [19]. TAM receptors have overlapping 
expression patterns and functions. However, TAM-deficient and 
triple gene knockout mice are viable [12]. Among the RTKs, 
the Tie (Tie1), Tek (Tie2), fibroblast growth factor receptor, 
vascular endothelial growth factor receptor (VEGFR), and 
platelet-derived growth factor receptor families contain extra-
cellular domains that include both Ig-like and FNIII domains 
or an Ig-like domain alone. The MET RTK family (including 
Met and Ron) is most closely related to TAMs based on amino 
acid sequence of the kinase domain [14]. MET RTKs can 
signal through TAM receptors to activate common RTK sig-
naling pathways and achieve functional redundancy [18,20]. 

Therefore, differences in the extracellular domain versus the 
intracellular kinase domain lead to distinct effects on cellular 
function.

Biological functions of Tyro3, Axl, and 
MerTK receptors

TAM receptors mediate the phagocytosis and engulfment 
of apoptotic cells, viral infection, homeostasis of blood vessel 
integrity, autoimmunity, and oncogenic processes [21,22]. In 
cell biology, apoptotic cell death and subsequent phagocytosis 
to clear the apoptotic bodies is important to reduce necrosis 
and intracellular organoid release that may lead to inflam-
mation and autoantibody creation. Loss of TAM receptor 
function has been linked to autoimmune disease resulting from 
failure to clear apoptotic cells [23]. TAM receptors, espe-
cially MerTK, function as bridges between phagocytes (e.g., 
macrophages and dendritic cells) and the apoptotic cells 
that they engulf. MerTK is expressed on the phagocytes and 
binds the ligands linked to the PtdSer-presenting apoptotic 
cells [Figure 1b] [24]. Intriguingly, enveloped viruses present 
PtdSer residues, mimicking apoptotic cells, and infect innate 
immune cells, resulting in decreased expression of type I 
interferon (IFN) [25]. Blockage of TAM receptors impairs the 
infectivity of viruses such as dengue, West Nile, Ebola, and 
Zika and reduces viral replication in dendritic cells [26-28]. 
TAM receptors also function as pleiotropic inhibitors of 
immune cells [29]. Reduced TAM signaling through down-
regulation of ProS may contribute to the progression of 
autoimmune diseases, including multiple sclerosis and sys-
temic lupus erythematosus [30,31]. Furthermore, TAM 
receptors, especially Axl and MerTK, are highly expressed 
in various cancers, driving conventional RTK signaling and 
playing an oncogenic role [2]. Downstream signaling mole-
cules of TAM receptors include PI3K-Akt-mTOR, MEK-ERK, 
p38, FAK, STAT5, NFκB, and other proteins that regulate 
cell proliferation, migration, survival, epithelial–mesenchymal 
transition (EMT), and chemoresistance [3,32-37]. The func-
tions of TAM receptors are both in regulating cancer cells and 
immune cells, which provide as good dual targets for cancer 
drug development.

Tyro3, Axl, and MerTK receptors in 
cancer

TAM receptors have been linked to various types of cancer. 
The expression and role of Axl has been studied extensively, 
whereas data on the role of Tyro3 in cancer are scarce. Axl is 
overexpressed in most solid tumors and hematologic malignan-
cies, and MerTK overexpression has been observed in breast, 
gastric, glioblastoma, lung, and prostate cancers, as well as 
melanoma and multiple myeloma. Overexpression of Tyro3 
only occurred in select hematopoietic malignancies, such as 
acute myeloid leukemia and multiple myeloma [Table 1]. 
Among the TAM receptors, Axl is a risk factor for poor prog-
nosis, including lymph node metastasis, reduced disease-free 
survival, and reduced overall survival in various types of 
cancer [Table 1]. In addition, activation of TAM receptors 
suppresses pro-inflammatory cytokines and decreases inflam-
mation, creating an immune-tolerant environment for tumor 

Figure 1: Structure of (a) Tyro3, Axl, and MerTK receptors and (b) the interaction 
between Tyro3, Axl, and MerTK receptors and ligands Gas6 and ProS. FNIII: Type 
III fibronectin, Gla: γ–carboxyglutamic acid-rich, (Ig)-like: Immunoglobulin-like, 
PtdSer membrane: Phosphatidylserine-presenting, SHBG: Sex hormone-binding 
globulin
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growth [70]. The oncogenic role of TAM receptors is well 
studied, with supportive evidence in various types of cancer. 
Furthermore, the inhibitors of TAM receptors, especially Axl, 
are under developing for treating cancers.

Tyro3, Axl, and MerTK receptors 
in immune cells and the tumor 
microenvironment

TAM receptors are also play an important role in certain 
immune cells, including dendritic cells, macrophages, nature 
killer (NK) cells, and platelets [1]. TAM-deficient NK cells 
demonstrated poor cytotoxic activity, 10-fold lower than 
normal NK cells, and have a lower number of NK cells, 
indicating that TAM receptors could regulate NK cell dif-
ferentiation [71]. TAM receptors have been shown to inhibit 
Toll-like receptor-induced proinflammatory cytokines, includ-
ing interleukin-6 (IL-6), tumor necrosis factor (TNF), type I 
IFNs, and IL-12, driving the transition to an immunosuppres-
sive state [23]. As indicated above, loss of TAM receptors in 
macrophages caused decreased clearance of apoptotic cells, 
as TAM receptors on macrophages interact with Gas6-linked 
apoptotic cells and mediate phagocytosis. These phagocytosis 
phenomena or so-called efferocytosis could further promote 
M2 polarization of macrophages by secreting IL-10, IL-4, and 
TGF-β and contribute to tumor progression. On the other hand, 
the M1 polarization cytokines, TNF-α, IL-1, and IL-12, were 
decreased, and subsequently reduced the antitumor activity of 
M1 macrophages [72]. Furthermore, activation of Axl by Gas6 
binding can increase the suppressive function of regulatory T 
cells (Treg) through upregulation of forkhead box P3 expres-
sion in vitro and in vivo [73]. Even though studies have shown 
that TAM receptors play an important role in immune system 
function, there has been little research into the immunological 
effects of TAM receptor inhibitors in cancer. So far, we know 
that inhibition of MerTK significantly increased inflammatory 
cytokines in serum and increased the number of cytotoxic cells 
in the TME [74]. In addition, mature NK cells were shown to 
express TAM receptors, and upon ligand (Gas6) activation, NK 
cell proliferation and IFNγ production were suppressed [75]. 
Furthermore, Gas6 secreted from tumor-educated stromal cells 

resulted in negative regulation of antitumor immunity, contrib-
uting to tumor progression [76]. In contrast, inhibition of TAM 
receptors showed a pro-tumorigenic effect in colitis-driven 
colorectal cancer [77]. Nevertheless, inhibition of TAM recep-
tors is needed as a mechanism to control the side effects of 
excessive inflammation and other immune disorders associ-
ated with cancer therapy. In summary, the research of the 
role of TAM receptors on tumor-associated macrophages, NK 
cells, dendritic cells, and T cells in cancer TME are needed to 
further elucidated.

Tyro3, Axl, and MerTK receptor 
inhibitors

Since the concept of TKIs was raised in 1988, which 
was focus on epidermal growth factor receptor (EGFR) [78]. 
However, the first TKI drug was imatinib, which is on the 
market for treating CML in 2001 [79]. Henceforth, the TKI 
drugs among targets, such as HER2, VEGF, FGF, PDGF, 
MET, c-kit, ALK, and second or third generation of them, 
are under development worldwide. TAM receptors belong 
to RTK. MerTK and Axl have been studied as therapeutic 
targets in various cancers, but more research is needed to 
assess these TAMs relative to tumor-associated macrophages 
and other cells, particularly immune cells in the TME. There 
are some TAM inhibitors under development in the preclini-
cal stage and in each stage of clinical trial [Table 2]. Many 
inhibitors are used to block Axl and/or MerTK, but they also 
have inhibitory effects on other RTKs, such as VEGFR, c-Met, 
and Flt3, leading to reduced cell proliferation, migration, and 
other properties of tumor progression in vitro and in a mouse 
xenograft model; the next step is to advance testing via clini-
cal trials.  In addition to small molecules, several anti-Axl 
monoclonal antibodies, such as YW327.62S [111] and 
20G7-D9 [112], and nucleotide aptamers, e.g., GL21.T [113], 
are under investigation at the preclinical stage. Thus, TAM 
inhibitors have great potential as cancer therapy; however, 
the associated effects on immune cells are limiting. Recently, 
a newly synthesized small molecule (UNC4241) has been 
shown to inhibit both TAM receptors and myeloid-derived 
suppressor cells, thereby enhancing anti-PD-1 therapy for 

Table 1: Association of Tyro3, Axl, and MerTK receptors in cancers
Cancer types Axl MerTK Tyro3 Associated outcomes References
Breast + + Axl: poor prognosis, metastasis [38-41]
Colorectal + All: poor prognosis [42]
Gastric + + Axl and MerTK: poor prognosis [43,44]
GBM + + Axl: poor prognosis [45,46]
H and N + Axl: poor prognosis, metastasis [47,48]
HCC + Axl: poor prognosis [49,50]
Lung + + Axl: poor prognosis, metastasis [51-53]
Melanoma + + Axl: drug resistance [54-56]
Ovarian + Axl: poor prognosis [57,58]
Pancreatic + Axl: poor prognosis [59]
Prostate + + Axl: drug resistance [60,61]
RCC + Axl: poor prognosis [62-64]
AML + + Axl: poor prognosis, drug resistance [65-67]
Multiple myeloma + + + [68,69]
AML: Acute myeloid leukemia, HCC: Hepatocellular carcinoma, H and N: Head and neck cancer, GBM: Glioblastoma, RCC: Renal cell carcinoma
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Figure 2:  Dual targeting of the inhibitors of Tyro3, Axl, and MerTK receptors. 
Left panel: The drug effects on cancer cells. Right panel: The drug effects on tumor 
immune microenvironment

 253

Wang and Ding / Tzu Chi Medical Journal 2021; 33(3): 250‑256

melanoma [114]. Above all, these pieces of evidence reveal 
that the treatment of inhibitors of TAM receptors in combi-
nation with anti-PD-1 antibody-drug may enhance the overall 
efficacy in treating cancer.

Conclusion
Overexpression of TAM receptors and their ligands, Gas6 

and ProS, has been strongly linked to the growth of various 
cancers through regulation of cell proliferation, migration, EMT, 
chemoresistance, and angiogenesis. On the other hand, TAM 

receptors function as pleiotropic inhibitors of immune cells, 
regulating phagocytic clearance of apoptotic cells and limiting 
cytokine release, which may make the TME a more tumor-favor-
able niche. Initial studies of TAM inhibitors for cancer therapy 
showed antitumor benefits, but further study is necessary to 
determine the full immunologic consequences. Future research 
may also explore combination treatments, sequence of adminis-
tration, and other considerations of therapeutic strategy to fully 
realize the potential benefits of TAM inhibitors in the era of indi-
vidualized targeted cancer therapy.

Perspective
The inhibitory drugs of TAM receptors are under devel-

opment, mostly due to the oncogenic role in the cancer 
progression. Indeed, blockage of TAM receptors could reduce 
cancer cell proliferation, migration, invasion, and tumor 
growth. Moreover, the effect of these drugs may not only 
inhibit tumor growth itself but also from TME. Inhibition 
of TAM receptors could decrease immunosuppressive activ-
ity, which affects macrophages, NK cells, and Treg cells. 
However, the side effects of the anti-immunosuppression and 
auto-immune diseases are needed to further consider in the 
future. Besides, those TKIs may also inhibit other RTK targets, 
which is sharing similar structures with TAM receptors. In 
summary, the dual targeting inhibitors of TAM receptors have 
great potential for treating various types of cancer [Figure 2].
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Table 2: Development of the inhibitors of Tyro3, Axl, and MerTK receptors
Inhibitor IC50 (nM) Other targets Clinical phase References

Axl MerTK Tyro3
Amuvatinib (MP-470) 10 c-kit, PDGFR, Flt3, RET Phase 2 [80,81]
Bemcentinib (R428, BGB324) 14 Phase 2 [82,83]
Bosutinib (SKI-606) Src, Abl Phase 2 [84,85]
Cabozantinib (XL184) 7 VEGFR2, c-Met, c-kit, Flt3 Phase 3 [86-89]
Dubermatinib (TP-0903) 27 Phase 2 [90]
Foretinib (XL880) 11 VEGFR2, c-Met, Tie-2, Ron Phase 2 [91]
Gilteritinib (ASP2215) 0.73 Flt3 Phase 3 [92,93]
Glesatinib (MGCD265) c-Met, VEGFR1/2/3, Ron Phase 2 [94,95]
Merestinib (LY2801653) 11 c-Met, TEK, Ron Phase 2 [96,97]
Sitravatinib (MGCD516) 1.5 2 DDR2, EPHA3, Flt4 Phase 2 [98]
BMS 777607 1.1 4.3 c-Met, Ron Phase 2 [99,100]
CEP-40783 (RXDX-106) 7 c-Met Phase 1 [101]
LDC1267 29 <5 8 c-Met, Aurora B, LCK Preclinical [75]
NPS-1034 10.3 c-Met Preclinical [102]
RU-301, RU-302 Lead compound [103]
S49076 7 2 c-Met, FGFR1/2/3 Phase 1 [104]
SGI-7079 Phase 2 [105,106]
UNC2025 14 0.74 17 Flt3 Lead compound [107]
UNC2250 1.7 Lead compound [108]
UNC2541 4.4 Lead compound [109]
UNC2881 22 Lead compound [110]
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