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Abstract
Breast cancer  (BC) is a frequently diagnosed cancer among women worldwide. Currently, 
BC can be divided into different subgroups according to the presence of the following 
hormone receptors: estrogen receptor, progesterone receptor, and human epidermal growth 
factor receptor 2. Each of these subgroups has different treatment strategies. However, 
the presence of new metastatic lesions and patient deterioration suggest resistance to 
a given treatment. Various lines of evidence had shown that cytokines are one of the 
important mediators of tumor growth, invasion, metastasis, and treatment resistance. 
Interleukin‑10  (IL‑10) is an immunoregulatory cytokine, and acts as a poor prognostic 
marker in many cancers. The anti‑inflammatory IL‑10 blocks certain effects of inflammatory 
cytokines. It also antagonizes the co‑stimulatory molecules on the antigen‑presenting cells. 
Here, we review the current knowledge on the function and molecular mechanism of IL‑10, 
and recent findings on how IL‑10 contributes to the progression of BC.
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The relative low survival rate of BC has been suggested to 
be associated with lymph node  (LN) metastasis. In a multi-
variate analysis, lymphatic invasion, but not vascular invasion, 
was identified as a poor prognostic factor in patients with 
BC  [11,12]. In addition, lymphatic vessel proliferation and 
LN metastasis, which are the events related with BC malig-
nancy, were associated with dense infiltration of inflammatory 
cells [11,13], particularly tumor infiltrating lymphocytes (TILs) 
and TAMs [14,15].

More currently, the presence of TILs has been used to 
predict patient’s response to chemotherapy in different sub-
types of BC and other cancers [15‑18]. For example, increased 
TILs are associated with better prognosis in HER2‑positive 
BC and TNBC, while it is associated with a worse progno-
sis in luminal‑HER2‑negative BC. TILs consist predominantly 
of T cells. CD8+ T cells and natural killer  (NK) cells usually 
correlate with favorable outcomes as these cells aid in tumor 
cell destruction  [8,19]. CD4+  T cells enhance penetration of 
CD8+  T cells by producing Th1 cytokines and activate   anti-
gen‑presenting cells (APCs) such as dendritic cells to 

Introduction

Breast cancer  (BC) is the most common cancer among 
women worldwide. According to the World Cancer 

Research Foundation and the American Cancer Institute, it 
accounts for 25.4% of the total number of new cancer cases 
in 2018  [1]. Currently, BC can be divided into different 
categories based on the presence of the following three 
hormone receptors: estrogen receptor, progesterone receptor, 
and human epidermal growth factor receptor 2  (HER2)  [2]. 
BC lacking expression of all the three types of hormone 
receptors is classified as triple‑negative BC  (TNBC)  [3], 
which makes up 12%–17% of all BC cases, and has a 
discouraging clinical outcome due to the lack of targeted 
therapy  [4]. In addition, TNBC is characterized by high 
nuclear grade, high mitotic activity, high metastasis rate, and 
low overall survival rate [5].

Tumor cells have the ability to escape immune 
surveillance and evade apoptosis  [6,7]. Tumor microenvi-
ronment  (TME) is one of the reasons tumor can escape host 
immune response. The TME comprises of many immunosup-
pressive cells including regulatory T  (Treg) cells, T helper 
type  2  (Th2) cells, tumor‑associated macrophages  (TAMs), 
myeloid‑derived suppressor cells, and, in some case, Th17 
cells  [8‑10]. Therefore, immunotherapy that modulates host 
immune response and restores immune surveillance may be 
a promising strategy for treating BC, particularly TNBC.
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participate in anti‑tumor responses [9]. M0 (nonactivated type) 
macrophages can polarize to M1 (pro‑inflammatory, anti‑tumor 
type) and M2  (anti‑inflammatory type) states and produce 
certain cytokines. The cytokines produced by these cells can 
affect various stages of tumor progression, including initiation, 
promotion, proliferation, tumor cell transition, angiogenesis, 
invasion, immune surveillance escape, metastasis, and drug 
resistance [20]. BC is not a cold tumor that contains only few 
infiltrating T cells. Instead, immune cells usually infiltrate the 
tumors and its TME. However, the TME is generally in an 
immunosuppressive state.

Various lines of evidence had shown that increased Treg 
cells in BC confer a more aggressive phenotype, which is 
characterized by decreased survival rate and increased relapse 
rate  [21‑23]. Tumor shrink was observed in a Treg depletion 
BC model, suggesting that the presence of Treg cells can 
promote tumor cell growth and metastasis [24‑27]. In an onco-
gene‑driven BC model, transient removement of Treg cells led 
to the reduction of both primary and metastatic tumors  [28]. 
The existence of Treg cells in the TME has been found to be 
associated with human tumors’ development and metastasis 
including BC  [29‑32]. Although experiments have demon-
strated that Treg cell can be used as a therapeutic target, the 
nature of Treg cells in human tumors remains unclear.

Treg cells have shown to be associated with many cytokines 
that are known to survey BC  [33,34]. Interleukin 10  (IL‑10), 
of all, plays an important coordination role in the occurrence 
of BC  [35]. IL‑10 is one of the anti‑inflammatory cytokines, 
and can inhibit inflammatory responses by antagonizing the 
co‑stimulatory molecules expressed on the APCs  [36]. Here, 
we review the function and molecular mechanism of IL‑10, 
and how IL‑10 contributes to the progression of BC.

Interlukin‑10
The gene of IL‑10 locates on chromosome 1 at q31‑32 [37] 

and is composed of five exons  [38]. IL‑10 protein encoded 
by this gene consists of 160 amino acids with a molecular 
weight of 18 kDa and forms a dimer to exert its function [39]. 
Human IL‑10 shows 73% amino acid sequence similarity with 
murine IL‑10  [39]. IL‑10 is expressed by many immune cells 
including macrophages, T cells, and NK cells  [40], and is a 
pleiotropic cytokine that has both immunomodulatory  [41‑43] 
and antiangiogenic properties  [41]. IL‑10 is expected to 
play a key role in limiting the host immune response during 
infection, inflammation, autoimmunity, transplantation, and 
tumorigenesis  [44,45]. IL‑10 is also known as the cytokine 
synthesis inhibitory factor [39] which can inhibit the produc-
tion of IL‑1α, IL‑1β, IL‑6, IL‑8, IL‑12, and IL‑18, as well as 
TNF‑α and granulocyte macrophage‑colony‑stimulating factor 
in T cells and macrophage. In addition, IL‑10 diminishes the 
expression of interferon  (IFN)‑γ in Th cells and peripheral 
blood mononuclear cells and stimulates the proliferation of 
mast cells.

Interlukin‑10 signaling pathways
The receptor of IL‑10 is a tetrameric transmembrane recep-

tor complex containing two IL‑10RA (also known as IL‑10R1) 

and two IL‑10RB (also known as IL‑10R2) proteins [36]. Both 
receptors are classified as class II cytokine  (CRF2) family 
which is composed of an intracellular domain, a transmem-
brane domain, and an extracellular domain  [36]. IL‑10RA has 
higher affinity for IL‑10 than IL‑10RB. IL‑10 binds to the 
extracellular domain of IL‑10RA and causes phosphorylation 
of Janus kinase‑1 (JAK1) and tyrosine kinase‑2 (TYK2). Once 
phosphorylated, JAK1 further phosphorylates the signal trans-
ducer and activator of transcription‑3  (STAT3) and STAT3, 
then translocases to the nucleus, and turns on the transcription 
of anti‑apoptotic and cell cycle‑related genes  [36]. Conversely, 
STAT3 silencing and the suppressor of cytokine signal-
ing 3  (SOCS3) protein reduces the expression of IL‑10  [39]. 
In addition to the JAK/STAT3 pathway, IL‑10 activates the 
phosphoinositide 3-kinase (PI3K)/Akt/GSK3 β signaling 
cascade and modulates downstream transcription in macro-
phages  [46,47]. Moreover, IL‑10 modulates mTOC1 activity 
in PI3K‑mediated monocytes  [46]. Meanwhile, the activation 
of PI3K/Akt/mTOC1 and STAT3 pathways by IL‑10 requires 
AMPK signaling  [48]. Notably, IL‑10R activation also stimu-
lates STAT1 and STAT5 pathways [49‑52].

Along with IL‑10, IL‑6 is also involved in STAT3 
activation  [Figure  1]. Although pro‑inflammatory and 
anti‑inflammatory cytokines can work within the same cell 
or through the same signaling pathway, they perform very 
distinct functions and their downstream mechanisms are dif-
ferent  [53‑55]. A  reasonable explanation may depend on the 
synergistic effect of STAT3 and other transcriptional cofac-
tors that provide different gene expression programs. For 

Figure  1: Interleukin‑10 signaling pathway. Binding of interleukin‑10 to its 
receptor causes phosphorylation of JAK1 and TYK2. Once phosphorylated, JAK1 
further phosphorylates signal transducer and activator of transcription‑3 through 
AMPK. The signal transducer and activator of transcription‑3 translocates into the 
nucleus and upregulates anti‑inflammatory genes. Interleukin‑10 also activates 
PI3K/Akt/mTOC pathway and inhibits GSK3β to promote anti‑inflammatory 
responses. Interleukin‑6, on the contrary, also activates signal transducer and 
activator of transcription‑3 pathway. However, it upregulates pro‑inflammatory 
genes and causes inflammatory response. The signal transducer and activator of 
transcription‑3 signaling can be inhibited by the suppressor of cytokine signaling 3
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example, in macrophages, both IL‑10 and IL‑6 induce the 
activation of SOCS3, but SCOS3 only inhibits the activity of 
IL‑6R  (gp130)  [56,57]. In addition, IL‑10‑stimulated‑heme 
oxygenase 1 contributes to the anti‑inflammatory response 
triggered by macrophages  [58]. Recently, Khan et  al. found 
that SOCS3 and STAT‑3 activities were regulated by down-
stream regulated gene 2 product  (NDRG2) which suppresses 
IL‑10 expression [39].

The association of interlukin‑10 with 
tumor‑associated macrophage and 
regulatory T cells

TAM has been found as the most abundant infiltrating leu-
kocyte in most tumors and is thought to be correlated with 
a worse outcome in many tumors  [59,60]. TAM facilitates 
tumor progression by its immunosuppressive effects. Many 
immunosuppressive products such as IL‑10, cathepsin B, and 
cathepsin S were produced by TAM in tumor sites [61]. IL‑10 
produced by TAM has been reported to contribute to thera-
peutic resistance in BC including irradiation, chemotherapy, 
and immunotherapy  [62]. TAM‑associated BC drug resistance 
is frequently associated with increased BCL2 expression and 
activation of STAT3 signaling [63]. Because TAM may lead to 
therapeutic resistance, finding new and efficient therapies for 
BC is important. Currently, the use of IL‑10 neutralizing anti-
body has been discussed and may be effective in TAM‑induced 
BC. Tumor infiltrating Treg cells and macrophages were 
reported to be the origin of IL‑10 production in murine tumor 
model  [64]. Therefore, chemotherapy‑induced TAM which 
infiltrates the BC may recruit IL‑10/IL‑10R pathway and play 
a role in tumor pathogenesis. By targeting the IL‑10 signal-
ing pathway, we may expect a decreased therapeutic resistance 
and a better clinical outcome [62].

IL‑10 brings into its immunosuppressive function at many 
aspects: suppression of T cell proliferation [65], modulation of 
APCs  [66], and preservation of the activity/stability of Treg 
cells  [67,68]. It is still unclear about the effect of IL‑10 on 
Treg cells, even though it is already known that IL‑10 plays 
a major role in Treg suppression  [69,70]. A  previous study 
indicated that IL‑10 magnifies IL‑10 expression  (in a classic 
feedback loop regulation) on Treg cells via STAT3 activation, 
which, conversely, is significant for the inhibition of Th17 
cell‑induced inflammation [67]. The role of IL‑10 on Treg was 
also confirmed in another study with murine colitis model. 
When IL‑10 is expressed on gut APCs, it preserves Foxp3 
expression on Treg cells  [68]. There are two types of Treg 
cells: natural Treg  (nTreg) and induced Treg  (iTreg). nTreg 
cells are naturally produced in the thymus, whereas iTreg cells 
are produced when our immune response encounters a tumor 
antigen. However, most of the studies focused on the existed 
IL‑10 on Treg but not in the course of iTreg production. 
Although the majority of Treg cells accumulating in tumors are 
nTreg cells, in some cases, iTreg cells are produced in sponta-
neous tumors or tumors without a defined tumor antigen [71]. 
BC has an increased presence of Treg cells  [72,73], yet little 
is known about the role of nTreg or iTreg cells in BC devel-
opment. Fascinatingly, even though both IL‑10 and IL‑6 play 

different roles in inflammation, they deliver signals through 
STAT3 phosphorylation, with IL‑6 being more crucial for the 
induction of Th17 cells [74] and detrimental for iTreg recruit-
ment  [75,76]. However, the role of IL‑10 in iTreg recruitment 
still remains controversial.

Mechanism of interlukin‑10 in the process 
of breast cancer and other tumors

IL‑10 paradoxically affects tumor development and 
pathogenesis  [77]. Currently, three biological activities of 
IL‑10 that contribute to the pleiotropic effect have been 
revealed  [Figure  2]. First, IL‑10 can promote CD8+  T cell 
activation and proliferation, which has a direct or indirect 
cytotoxic effect on the cancer cells. Second, IL‑10 inhibits T 
cell‑stimulated tumor‑killing immunity by suppressing antigen 
presentation by APCs. Lastly, IL‑10 can inhibit tumor‑promot-
ing inflammation  [78]. Although high serum IL‑10 is highly 
prevalent in end‑stage cancer patients and correlates negatively 
with the survival  [79], high IL‑10 is generally accompanied 
by other cytokines and can dramatically affect the patients’ 
overall immunity.

Both the pro‑  and anti‑tumor effects of IL‑10 have been 
well characterized  [80]. The role of IL‑10 in modulating the 
immune response appears to depend on the TME and the 
number of IL‑10 receptors expressed on the immune cells [81]. 
Depleted IL‑10 in mouse model has shown a positive relation-
ship with the expression of inflammatory cytokine, IL‑1, which 
facilitates tumor progression  [36]. IL‑10 also suppresses the 
proliferation and activity of T cells [82] and therefore stimu-
lates tumor cell proliferation and metastasis  [83]. Thence, 
IL‑10 production can diminish cell‑modulated inflammatory 
response in metastatic cancer cells [39] and can be a latent 
biomarker for human cancers in forecast and prognosis  [84]. 
Moreover, IL‑10 shortage contributes to the rejection of ultra-
violet‑induced tumorigenesis  [85]. In addition, the expression 
of IL‑10 mRNA is detected in  >50% of BC samples  [86]. In 
many cancer patients, the existence of IL‑10 in the TME has 
been depicted as a poor prognostic factor  [77,87,88]. In addi-
tion, several evidences suggested a contrasting role for IL‑10 
in cancers. Both the expression and consumption of IL‑10 have 
shown to be associated with tumor shrinkage and therapy resis-
tance [89‑91]. In contrast to the inhibition of cancer-facilitating 
inflammatory mediators (reviewed in [80]), IL-10 also pro-
motes tumor angiogenesis [92].

The BC risk associated with chronic mastitis has been well 
documented [84]. It appears that the toll‑like receptors (TLRs) 
play a role in BC pathogenesis and recurrence  [93‑95]. 
TLRs can be activated through pathogen‑associated molec-
ular patterns  (PAMPs) exogenously and endogenously, 
which, in turn, leads to the activation of inflammatory path-
ways  [95]. It was established that TLRs are highly expressed 
in BC samples  [93‑96], and is even higher in recurrence 
BC samples  [96,97]. Inflammatory markers such as serum 
C‑reactive protein and amyloid A are correlated to poor 
clinical outcome in BC patients  [98]. TLR activation has an 
important role in IL‑10 production. PAMPs can induce IL‑10 
production in macrophages by various pathways including 
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TLR2/MSK/CREB and TPL2/ERK. The signaling pathways 
also produce type I IFNs, which promote IL‑10 production 
and synergize with IL‑10 in regulating downstream inflamma-
tory process [78].

The function of IL‑10 is controversial in BC. Studies inves-
tigating the relationship between IL‑10 and BC are shown in 
Table 1. Overexpression of IL‑10 leads to a defect in dominat-
ing and immunogenic tumors  [113], while IL‑10RA inhibition 
improves therapeutic outcome in BC model  [114]. Currently, 
very little is known about the in  vitro function of IL‑10 on 
the phenotypic conduct of BC cells, in terms of tumor cell 
migration and adherence to lymphatic and vessel endothelium. 
IL‑10 has been reported to positively correlate with the overall 
survival rates in patients with colorectal cancer [115] and 
BC [99], but negatively correlate with patients with non‑small 
cell lung carcinoma [116] and gastric cancer [92]. In addition, 
higher serum IL‑10 concentration was detected in BC patients 
than in healthy individuals  [39, 81,104], which is correlated 
with a bad clinical outcome  [117]. It is indicated that IL‑10 
displayed an anti‑metastatic function in murine model of BC 
and melanoma [100]. One recent study showed that IL‑10 sup-
presses MDA‑MB‑231 cell migration in a dose‑dependent 
manner  [118]. The effect of IL‑10 on MCF‑7 cell was also 
observed in the same study, in which IL‑10 can slightly but 
not significantly reduce the migration at 24 h after treatment. 
Because the migration rate of MDA‑MB‑231 is higher than 
that of MCF‑7, a longer time would be required to observe the 
effect of IL‑10 on MCF‑7. IL‑10 also causes immunosuppres-
sion by inducing TNF, IL‑1, and IL‑12 and certain chemokine 
production [119]. In addition, IL‑10 reduces the production of 
CD80 and CD86 which are the two co‑stimulatory molecules 
on cancer cells. IL-10 refrains APCs uptaking tumor anti-
gens [119] and provokes upregulation of certain factors which 
plays significant role in BC progression. [37] Administration 
of anti‑tumor vaccine before IL‑10 treatment has been shown 
to induce tumor development  [89,91,120,121]. IL‑10 induces 
the production of tissues inhibitor of metalloproteinase and 
reduces the production of matrix metalloproteinase  (MMP), 

thereby stimulating angiogenesis in BC  [37]. Treatment of 
IL‑10 also accelerates inflammatory response by inducing the 
production of IFN‑γ, IFN‑γ‑inducible protein‑10  (IP‑10, also 
known as CXCL10), and other monokines  [122]. As IL‑10 
promotes the progression of cancer cells, treatment with IL‑10 
antagonist may achieve a promising therapeutic efficacy and 
outcome [123].

Mechanism of interlukin‑10 in anti‑tumor 
activity

IL‑10 in the TME has also been shown to correlate with 
anti‑tumor immunity in both human and animal models. IL‑10 
exerts its anti‑tumor effect by inhibiting angiogenesis  [37]. 
This anti‑angiogenic effect was due to the reduction of vas-
cular endothelial growth factor, TNF‑α, IL‑1β, IL‑6, and 
MMP‑9  [119]. IL‑10 can activate B cell differentiation into 
plasma cells which produce tumor cell‑specific antibodies 
and mediate antibody‑dependent cell cytotoxicity  [124,125]. 
IL‑10  suppresses the translocation of nuclear factor‑κB into 
the nucleus and inhibits the signaling for inflammation  [39]. 
IL‑10 as well activates TILs and inhibits tumor development. 
Thence, IL‑10 in the TME may protect tumor cell destruction 
by modulating host immune responses  [81,89,91,120,121]. 
The contribution of IL‑10 to the anticancer activity of NK 
cells is also well elucidated  [38]. IL‑10 dose‑dependently 
aided target cell vandalization by activating NK cells in an 
animal study  [122], while another study demonstrated that 
IL‑10 can activate CD4+  or CD8+  T cell to prevent the 
destruction of tumor cells  [39]. Therefore, IL‑10 immu-
notherapy that modulates immunosuppression at the TME 
may be beneficial in treating BC and may be thought as a 
novel therapeutic approach  [122].    Accumulating successful 
of PEGylated IL‑10 treatment to cancer models further sup-
ports the use of IL‑10 immunotherapy in BC  [126]. IL‑10 
performs its anti‑tumor function by enhancing the infiltra-
tion of CD8+ T cells in tissue, promoting T cell memory and 
upregulating IFN‑γ expression  [52,126]. PEGylated IL‑10 
was therefore created [127] to stimulate such anti‑tumor 

Figure 2: Paradoxical effect of interleukin‑10 on cancers. Interleukin‑10 paradoxically affects tumor development by three pathways. First, interleukin‑10 promotes 
CD4+ T cell activation and proliferation, which promote interferon‑γ secretion and induce tumor cell death. Next, interleukin‑10 inhibits the effect of antigen‑presenting 
cells, thereby allowing tumor cell to survive. At last, interleukin‑10 can inhibit certain inflammatory cells and inhibit inflammation‑related tumor cell growth
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responses in cancer patients  [128]. Growing evidences point 
to the fact that IL‑10 can promote tumor destruction and 
its potential can serve as a key agent for cancer patients’ 
immunotherapy [78,129,130].

Interlukin‑10 and programmed cell 
death‑1 programmed cell death ligand 1

Programmed cell death‑1  (PD‑1) and programmed cell 
death ligand 1  (PD‑L1) are known to inhibit anti‑tumor immu-
nity  [131]. Therefore, increasing attention has been focused 
on treating cancers with therapeutic PD‑1 and PD‑L1 antibod-
ies. Studies concerning the release of IL‑10 in patients resisting 
anti‑PD‑1/anti‑PD‑L1 monotherapies revealed that IL‑10 is linked 
to PD‑1/PD‑L1 signaling pathways. Blockage of PD‑1 and IL‑10 
improves the survival by reducing tumor burden and augments 
anti‑tumor immune responses  [131]. Pembrolizumab  (PD‑1 
inhibitor) and atezolizumab  (PD‑L1 inhibitor) are two immune 
checkpoint inhibitors that are heavily utilized in BC immunother-
apy. The use of a single inhibitor has shown to produce durable 
responses and favorable survival in TNBC patients  [132,133]. 
The inhibitors are also augmented with chemotherapy agents 
such as nanoparticle albumin‑bound paclitaxel (nab‑paclitaxel) to 
treat PD‑L1+ patients with metastatic TNBC [133]. Neoadjuvant 
chemotherapy, when combined with cytotoxic chemotherapy, 
achieves higher rates of pathological complete response and 
significantly increases the event‑free survival  [134]. Several lit-
eratures have already suggested that IL‑10 and PD‑1 pathways 
intersect in many cancers [135,136]. Considering that IL‑10 could 
paradoxically affect patients’ immune responses, combination 
therapy that target IL‑10 signaling to augment immune responses 
is compelling.

Conclusion
One characteristic feature of BC is immune infiltration. 

Although the TME of BC is constantly immunosuppressive, 

infiltrated immune cells can exhibit both pro‑  and anti‑tumor 
activities. IL‑10 is one of the cytokines produced by these 
immune cells and displays both tumor‑promoting and ‑ inhib-
iting activities. A  broad range of IL‑10‑expressing and 
IL‑10‑replying cells take part in modulating the immune 
response under different circumstances and at different sites. 
However, the opposing effects of IL‑10 make therapeutic 
manipulation challenging. A  profound comprehension of the 
molecular mechanisms and cellular functions of IL‑10 may 
enable us to design potential therapeutic agents to manipu-
late IL‑10‑related immune response to tumor cells. At last, the 
use of IL‑10 agonists and antagonists may have advantages in 
treating BC.
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