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Abstract
Millions of individuals worldwide are affected by age‑related lower urinary tract symptoms 
(LUTSs), including impaired detrusor contractility, detrusor overactivity, decreased bladder 
sensation, as well as increased bladder capacity often resulting in incomplete bladder 
emptying. Yet, the underlying factors that contribute to these symptoms are not known and 
there are few therapies to treat these disorders. Because of the complex pathophysiology, a 
number of animal models have been studied over the years to better understand mechanisms 
underlying patient symptoms. Such animal models can aid in the investigation of aspects 
of age‑associated LUTSs that cannot be pursued in humans as well as to develop and test 
potential therapies. In addition, the search for urinary factors that may be a causative agent 
has resulted in the discovery of a number of potential targets that could serve as predictive 
biomarkers which can aid in early diagnosis and treatment of these chronic disorders. 
Recent evidence has supported a role for chronic changes in mitochondrial function 
and oxidative stress (along with production of reactive oxygen species) and abnormal 
urodynamic behavior in older patients. This review discusses new insights into how aging 
alters fundamental cellular processes that impair signaling in the bladder wall, resulting in 
abnormal voiding function.
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what is caused by comorbidities. LUTS is an ever‑increasing 
problem: an estimated 45% of the 2008 worldwide popula-
tion  (4.3 billion) was affected by at least one LUTS, reducing 
the quality of life and this number is expected to significantly 
increase over time [4].

Animal models of aging‑related bladder 
dysfunction

Animal models allow detailed investigation of structural 
and functional aspects of the micturition pathways and changes 
occurring with aging. In addition, the genetically modified 
mouse models allow further understanding and targeting of 
specific genes. The influence of aging on bladder structure 
and function has been studied in in vivo and/or in vitro studies 
performed mostly in rodents of different strains and/or gender. 
These include C57Bl6 mice, the  senescence‑accelerated prone 
mice (SAMP8), Fisher 344 rats, and many others  [5‑10]. The 
relation between aging per se and external influences on the 

Introduction

Aging has been defined as the continued loss of homeo-
static reserve. It is a complex, biological process 

controlled by multiple genetic, epigenetic, and environmental 
factors that result in progressive stress to the cell, tissue, or 
organ in question  [1]. Aging‑related bladder dysfunction and 
lower urinary tract symptoms  (LUTSs) represent an increas-
ing problem in developed countries due to increased life 
expectancy  [2,3]. LUTSs are generally divided into storage 
(irritative), voiding  (obstructive), and postmicturition com-
ponents. Storage symptoms include urgency, frequency, 
nocturia, and urgency incontinence (i.e., the overactive bladder 
syndrome). Voiding symptoms comprise reduced force of 
stream, hesitancy, inability to empty the bladder, and strain-
ing. Postmicturition symptoms include feeling of incomplete 
emptying and postmicturition dribble. Most of these symp-
toms have been suggested to be age dependent and attributed 
to various factors including reduced bladder capacity, changes 
in bladder sensation, and on urodynamic investigation, detru-
sor overactivity  (DO). However, the pathophysiology behind 
the dysfunctions is sometimes difficult to establish since what 
can be attributed to “normal aging” cannot be separated from 
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detrusor from diseases in the nervous system, in the vascu-
lar supply, and in the lower urinary tract smooth muscles is 
poorly understood in humans. In animals, kept under con-
stant laboratory conditions, theoretically, the influence of 
external influences can be reduced, which should enable the 
study of the effect of age only on bladder function. However, 
this does not seem to provide consistent results in part due 
to differences between species, gender, or strain. Cystometry 
has yielded somewhat more variable results mainly due to 
species and/or gender differences and/or anesthesia  [11,12]. 
Ischemia, which is a main risk factor in aging  [13,14], has 
shown to result in dynamic changes, resembling in the initial 
phase DO  (e.g., increased nonvoiding contractions, increased 
voiding frequency, and decreased voided volume), and pro-
gressing with time to detrusor underactivity  (e.g., decreased 
voiding frequency). Thus, depending on the underlying risk 
factors, aging may have variable effects on bladder function. 
Data from animal models, which seem to be as variable as the 
data from human studies in different clinical conditions, may 
be useful for understanding the progression of bladder func-
tion with age.

Aging is associated with mitochondrial dysfunction and 
increased oxidative stress

At the cellular level, mitochondria are considered major 
players in energy production, intracellular communication, and 
are associated with a number of age‑related diseases  [15‑18]. 
Mitochondria, considered the powerhouse of organelles and 
generate 95% of all cellular energy, play a key role in cel-
lular homeostasis, including generation of reactive oxygen 
species  (ROS), apoptosis, regulation of intracellular calcium, 
and generation of ATP via oxidative phosphorylation and 
release of factors that modulate pro‑  and antiaging signaling 
pathways. Dysfunctions in mitochondrial metabolic capac-
ity and structural alterations  (i.e., accumulation of damaged 
mitochondria and enhanced cross‑linking of proteins) can 
contribute to oxidative stress and cell death during the aging 
process.

Oxidative stress is broadly defined as a disturbance in a 
pro‑oxidant–antioxidant balance  (i.e., uncontrolled increases 
in the production of reactive oxygen  [or nitrogen] species 
or deficiencies in antioxidant defense mechanisms), which 
can lead to potential damage. Oxidative metabolism can 
yield free radicals and other unstable oxygen‑  and nitro-
gen‑containing molecules  [19‑22]. When produced at low or 
physiological levels, ROS can regulate a number of processes 
including maintenance of vascular tone and signal transduc-
tion. However, at higher levels, excessive ROS can result 
in oxidative damage to lipids, proteins, carbohydrates, and 
DNA, leading to the generation of secondary reactive species 
and finally loss of function and cell death  [19‑22]. ROS  (and 
reactive nitrogen species, RNS) are also generated during 
radiation therapy, and in the bladder, radiation toxicity gener-
ates LUTS  [23,24]. Sources of ROS can include nitric oxide 
synthase, xanthine oxidase, as well as the mitochondria, an 
essential supplier of energy. Mitochondria have been described 
as both a primary source and also target of ROS. ROS is a 
general term that includes a number of species such as the 
superoxide anion, which is often increased in conditions of 

ischemia or hypoxia. Excessive amounts of superoxide can 
interact with nitric oxide to form peroxynitrite which is a 
pro‑oxidant capable of rapidly diffusing to nearby cells induc-
ing damage. The highly reactive hydroxyl radical is thought to 
mediate most free radical‑induced tissue damage [19‑22].

Mitochondrial DNA  (mtDNA) is more susceptible to oxi-
dative damage than nuclear DNA due in part to proximity of 
mtDNA to the respiratory chain and decreased availability 
of repair mechanisms  [25]. Damage to mtDNA can not only 
result in mitochondrial dysfunction but also trigger inflamma-
tory and innate immune responses  [26,27]. Studies suggest 
that oxidative stress also plays a role in fibrotic diseases by 
augmenting the production of various regulators of fibrosis 
such as growth factors, angiogenic factors, and cytokines. In 
the airways, augmented ROS is involved in increased vascular 
permeability and bronchial hyperresponsiveness, characteris-
tic features of asthma  [28,29]. Because mitochondria are the 
major consumers of cellular oxygen, it is not surprising that 
these organelles are significantly impacted by hypoxia and 
ischemia.  Reduced levels of oxygen result in augmented ROS 
production, decreases energy production and changes in mito-
chondrial morphology.

Evaluation of age‑associated changes in 
LUT form and function

Aging is associated with an impairment of blood vessel 
function and changes may occur in the vasculature on the 
molecular, cellular, structural, and functional levels  [14]. 
Endothelial dysfunction leads to oxidative stress and increased 
levels of pro‑inflammatory cytokines, which represents an 
independent risk factor for the development of atherosclerosis 
and hypertension. Evidence from epidemiologic, clinical, and 
animal basic research suggests that aging‑associated changes 
in the pelvic vasculature, resulting in atherosclerosis and vas-
cular dysfunction, may be important factors in the generation 
of LUTS  [30,31]. Evidence from clinical and basic research 
suggests that atherosclerosis in both genders can induce a 
reduction of bladder blood flow, leading to chronic ischemia. 
Chronic bladder ischemia and repeated ischemia/reperfusion 
during a micturition cycle may produce oxidative stress and 
lead to denervation of the bladder and the expression of tissue 
damaging molecules in the bladder wall  [32,33]. Studies in 
animal models suggest that the extent of bladder dysfunction 
in chronic ischemia depends on the degree and duration of 
ischemia. This appears to be responsible for the development 
of DO progressing to underactivity and inability to empty the 
bladder [34]. When bladder ischemia becomes severe and pro-
longed, progression of denervation and damage to detrusor 
muscle with fibrosis formation may cause voiding symptoms.

Further, age‑related changes in the extracellular matrix 
(ECM) may also impact the function of tissues in the bladder 
wall. Despite having different etiologies, most chronic fibrotic 
disorders produce a persistent production of similar factors 
including ROS that stimulate ECM production, which pro-
gressively destroys the organ’s architecture and, in turn, its 
function  [35,36]. Mitochondria are the primary source of 
ROS; pathologies associated with mitochondrial dysregulation 
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(including aging) lead to overproduction of ROS, superoxide, 
and factors that promote fibrosis  [37]. As the bladder fills, 
the coordinated recruitment of collagen fibers across both the 
smooth muscle and lamina propria layers, essential for the 
elasticity of the bladder wall, is lost during aging [38]. Further, 
this impacts the ability of the urothelium to “sense” changes in 
mechanical deformation that occurs during a micturition cycle 
and release mediators that may influence sensation.

Much less is known about the effect of aging on urothe-
lial changes. The urothelium, which lines the inner surface of 
the renal pelvis, ureters, and urinary bladder, not only forms a 
high‑resistance barrier to ion, solute and water flux, and patho-
gens, but also functions as an integral part of a “sensory web” 
which receives, amplifies, and transmits information about 
its external milieu  [39,40]. Structural studies have shown 
urothelial thinning, granular appearance of the umbrella cell 
layer often containing what appears to be cellular debris in all 
layers. These could be the result of oxidative stress and altered 
mitochondrial dysfunction. In support, increased ROS in cul-
tured urothelial cells, associated with upregulation of transient 
receptor potential cation channel subfamily M member 8, 
decreased total antioxidant capacity, and significantly increased 
levels of lipid peroxides, malondialdehyde, and inducible 
nitric oxide synthase, all markers of oxidative stress, as well 
as ultrastructural alterations in mitochondria with accumula-
tion of lipofuscin have been reported  [41,42]. Further, recent 
studies have revealed an age‑related decrease in lysosomal 
function in urothelium, which may have significant effects on 
the physiological function of the bladder [43]. Lysosomal dys-
function is associated with a number of age‑related pathologies 
that can affect all organ systems  [44,45]. Lysosomes perform 
a complex array of functions including promoting the turnover 
of cellular organelles and proteins and regulation of various 
activities such as plasma membrane repair  [44,45]. A  dys-
function in lysosomal system can have debilitating effects 
on cellular function as is observed in age‑related neurode-
generative diseases including Alzheimer’s and Parkinson’s. 
Recent findings showing that lysosomal function is diminished 
in aging demonstrate that aged  (urothelial) cells exhibit a 
gradual accumulation of metabolic waste products and cellular 
debris [43]. Defects in this function may alter the homeostatic 
chemical balance of the urothelium and cellular communica-
tion with underlying layers. This in turn could lead to altered 
detrusor function, manifesting in the various clinical condi-
tions that are observed in the elderly.

Conclusions and future directions
While no animal model can be expected to reproduce all 

the various symptoms experienced by humans, more complex 
models are needed to mimic the symptoms and systemic 
changes found in aged patients which include incontinence, 
overactivity, and/or the inability to empty. Because all aspects 
of the disease may not be readily addressed by a single animal 
model, several models may be required, to create a reason-
able picture of both pathophysiology and the time course of 
the disease  (which includes temporal changes in biomarkers). 
While the underlying mechanisms are likely to be complex, 
they may be controlled in part by multiple genetic, epigenetic, 

and environmental factors. Further studies are needed to corre-
late findings in animal models to patient symptoms to provide 
better insights and new strategies for the clinical management 
of these bladder disorders. In addition, future translational 
studies should also consider how changes in bioenergetics 
and oxidative stress impact bladder aging to develop new 
therapeutic strategies that may be an important tool to treat 
age‑related bladder control problems.
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