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a b s t r a c t

Schizophrenia is a highly heritable disorder, but many aspects of its etiology and pathophysiology remain
poorly understood. Synaptic pathology has been reported as a feature of the brain in schizophrenia.
Abnormal expression of some synaptic proteins (e.g., SYP, GAP-43, and NRGN) in different brain regions
has been linked to this disorder in postmortem brain studies. In our series of genetic studies, we used
a resequencing strategy to search for genetic variants in these candidate genes in a sample of patients
with schizophrenia and nonpsychotic controls, all of whom were Han Chinese from Taiwan, and con-
ducted further association and functional studies. After resequencing these candidate genes, no common
polymorphisms appeared to play a major role in conferring susceptibility to schizophrenia in our pop-
ulation. In contrast, we identified some rare patient-specific variants. The results of the reporter gene
assays and software analysis demonstrated the influence of reporter genes on the function of each
studied gene, suggesting that they may contribute to the pathogenesis of schizophrenia. These data lend
support to the hypothesis that multiple rare mutations are involved in the pathogenesis of schizophrenia,
and provide genetic clues that indicate the involvement of synaptic pathology in this disorder.
Copyright � 2012, Buddhist Compassion Relief Tzu Chi Foundation. Published by Elsevier Taiwan LLC. All

rights reserved.
1. Introduction

Schizophrenia is a complex disorder with a high degree of
genetic influence in its etiology [1]. It is nowgenerally accepted that
this illness involves variants in multiple genes that are individually
insufficient to cause the illness, but which act in combination and
with environmental factors to increase the risk of development [2].
Although the majority of the genetic loci that contribute to
schizophrenia most likely have weak effects, their identification is
essential to determining the neurobiological molecules that play
a crucial role in the disorder.

Over the past two decades, structural anomalies have been
identified in the brains of patients with schizophrenia [3]. This can
be seen in in vivo neuroimaging studies that have demonstrated
significant ventricular enlargement and decrease in cortical mass
[4]. Postmortem brain studies have shown a reduction in the total
brain volume, particularly in the cerebral cortex [5], and functional
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brain-imaging studies have indicated impaired connectivity
between the frontal lobe and other brain regions [6,7]. At the
cellular and molecular level, microscopic histopathological studies
have demonstrated reduced neuronal size and decreased density of
the dendritic spines [8]. Taken together, these changes in the
synaptic components may reflect a decrease in the cortical volume,
and it is believed that such changes may underlie the aberrant
functional connectivity in schizophrenic patients [9,10].

For these reasons, some synaptic proteins have been utilized as
proxy markers of synapses to determine whether synaptic alter-
ations are a feature of schizophrenia [9,10]. Three such synaptic
proteins that have been repeatedly reported to be involved in
schizophrenia are synaptophysin (SYP), growth-associated protein
43 (GAP-43), and neurogranin (NRGN) [9].

2. Genetic and functional analyses of the SYP gene
in schizophrenia

SYP is an abundant integral membrane protein in the synaptic
vesicles that is expressed in 95% of cortical synaptic terminals
[11,12]. Its expression occurs early in neurogenesis and is greatly
upregulated during synaptogenesis [13]. This protein is known to
Foundation. Published by Elsevier Taiwan LLC. All rights reserved.
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regulate neurotransmitter release and synaptic plasticity [14,15]. In
addition, it participates in the biogenesis and recycling of synaptic
vesicles [16,17].

Several studies have examined SYP expression in the post-
mortem brains of patients with schizophrenia. Using in situ
hybridization, histochemistry, immune autoradiography, and
Western blot analysis, decreased SYP expression has been
demonstrated in the prefrontal cortex, medial temporal cortex,
visual association cortex, hippocampus, and thalamus [18e33].
Conversely, elevated SYP protein levels have been found in the
anterior cingulate cortex [34,35]. Microarray studies have also
highlighted lower levels of SYP in the postmortem brains of
patients with schizophrenia, along with other presynaptic markers
[36]. These findings lend support to the notion that SYP distur-
bance in specific brain regions might be part of the pathogenesis of
schizophrenia [9].

The SYP gene (gene ID: 6855) has been mapped to chromosome
Xp11.23-p11.22. This region has been linked to schizophrenia
[37,38]. The function of SYP, to a large extent, is believed to be
affected by its genetic variations [39]. To test this possibility, we
searched for genetic variants in the promoter region, including all
exons and both UTR ends of the SYP gene, using direct sequencing in
a sample of patients with schizophrenia (n¼ 586) and nonpsychotic
controls (n¼ 576), all of whomwere Han Chinese from Taiwan, and
conducted further association and functional studies [40].

After sequencing all of the amplicons in the 586 patients and
576 control patients, we identified two common polymorphisms
(c.*4þ271A>G and c.*4þ565T>C) in the SYP gene. Single nucleotide
polymorphism (SNP)- and haplotype-based analyses indicated no
associations with schizophrenia. In addition, we identified six rare
variants in seven of the 586 schizophrenic patients, including one
variant (g.-511T>C) located in the promoter region, one synony-
mous (A104A) variant and two missense variants (G293A and
A324T) located in the exonic regions, and two variants (c.*31G>A
and c.*1001G>T) located at the 30UTR. No rare variants were found
in the control subjects. The results of the reporter gene assay
demonstrate the influence of g.-511T>C and c.*1001G>T on the
regulatory function of the SYP gene, while the influence of
c.*31G>A may be tolerated. In silico analysis demonstrated the
functional relevance of other rare variants. These findings lend
support to the hypothesis of multiple rare mutations in schizo-
phrenia and provide genetic clues that indicate the involvement of
SYP in this disorder.

3. Genetic and functional analyses of the GAP-43 gene in
schizophrenia

GAP-43 is a neuron-specific phosphoprotein that is localized to
the presynaptic membrane and is a substrate of protein kinase C
(PKC). Its phosphorylation by PKC in response to extracellular
guidance cues could regulate the behavior of F-actin in neuronal
growth cones [41]. In transgenic mice, overexpression of GAP-43
results in the spontaneous formation of new synapses and
enhances sprouting after injury [42,43], whereas manipulations
that abolish GAP-43 expression result in the disruption of axon
outgrowth and could lead to premature death [44,45]. GAP-43 is
expressed primarily during brain development and declines
sharply in most brain regions after synaptogenesis is completed
[41]. High levels of GAP-43 persist in neocortical-association areas
and the limbic system throughout life, where the protein might
play important roles in mediating experience-dependent synaptic
plasticity and long-term potentiation [41].

Several studies have examined GAP-43 expression in the post-
mortem brains of patients with schizophrenia. Alterations in
GAP-43 mRNA levels have been demonstrated in the dorsolateral
prefrontal cortex, primary visual cortex, anterior cingulate gyrus,
and hippocampus [46e48]. Additionally, GAP-43 protein levels
have been found to be altered in the frontal cortex, visual associ-
ation cortex, and hippocampus [31,49,50]. These findings lend
support to the notion that GAP-43 disturbances in specific brain
regions might be part of the pathogenesis of schizophrenia.

The GAP-43 gene (gene ID: 2596) has been mapped to chro-
mosome 3q13.1-q13.2 [41]. This region has been linked to
schizophrenia in a Japanese single multiplex pedigree, and in
a meta-analysis of 32 genome-wide linkage studies that were
performed on different populations [51,52]. As part of our series on
molecular genetic studies on schizophrenia, we were interested in
understanding whether the GAP-43 gene plays a role in conferring
genetic liability to schizophrenia. To test this possibility, we
searched for genetic variants in the promoter region and three
exons (including both UTR ends) of the GAP-43 gene using direct
sequencing of a sample of patients with schizophrenia (n¼ 586)
and nonpsychotic controls (n¼ 576), all of who were Han Chinese
from Taiwan, and conducted further association and functional
studies [53].

After sequencing all of the amplicons of the 586 patients and
576 control patients, we identified 11 common polymorphisms in
the GAP-43 gene. SNP- and haplotype-based analyses indicated no
associations with schizophrenia. Additionally, we identified four
rare variants in five of the 586 patients, including one variant
located in the promoter region (c.-258-4722G>T) and one synon-
ymous (V110V) and two missense (G150R and P188L) variants
located on exon 2. No rare variants were found in the control
patients. The results of the reporter gene assay demonstrate that
the regulatory activities of constructs containing c.-258-4722T was
significantly lower when compared with the wild-type construct
(c.-258-4722G). In silico analysis also demonstrated the functional
relevance of other rare variants. These findings lend support to the
hypothesis of multiple rare mutations in schizophrenia, and they
provide genetic clues that indicate the involvement of GAP-43 in
this disorder.

4. Genetic and functional analyses of the NRGN gene in
schizophrenia

NRGN is a neural-specific, calmodulin (CaM)-binding protein
localized to the postsynaptic membrane and is a substrate of PKC
[54]. Glutamate stimulation of N-methyl-D-aspartate (NMDA)
receptors results in calcium influx to the neuron and NRGN
oxidation [55]. These induce dissociation of the NRGN-CaM
complex and stimulate the phosphorylation of NRGN by PKC,
which prevents the rebinding of NRGN and CaM [56]. As a CaM
reservoir, NRGN regulates the release of CaM and the activities of
downstream CaM-Ca2þ-dependent enzymes that play important
roles in the neuroplasticity mechanisms of learning and memory
[57,58]. Therefore, altering NRGN activity could mimic the effects of
NMDA-receptor hypofunction that has been suggested by several
studies, thereby implicating NRGN in the pathophysiology of
schizophrenia [59].

NRGN has been found in neurons in the cerebral cortex, hippo-
campus, striatum, and amygdala [60]. During development, NRGN
expression is regulated by thyroid hormones [61], and its highest
expression is coincident with the developmental period character-
ized by rapid dendritic growth and the formation of the majority of
the cortical synapses [62]. Broadbelt et al. (2006) examined NRGN
expression in the postmortem brains of patients with schizophrenia.
Lowered NRGN immunoreactivity was demonstrated in areas 9 and
32 of the schizophrenic prefrontal cortex [63]. Therefore, NRGN
disturbance in specific brain regions might be part of the patho-
genesis in schizophrenia.
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Genome-wide association (GWA) studies have identified one
SNP (rs12807809) located upstream of the NRGN gene that is
associated with schizophrenia [64,65], but causal variants that
account for the association signal have not been determined. GWA
data usually indicate the indirect association of a proxy of a strongly
correlated causal variant that has a similar frequency or synthetic
association with one or more rarer causal variants in the linkage
disequilibrium [66,67]. Causal variants require extensive rese-
quencing and association analysis. In order to find the causal vari-
ants of the NRGN gene associated with schizophrenia, we searched
for genetic variants in the promoter region and all exons (including
both UTR ends and rs12807809) using direct sequencing in a sample
of patients with schizophrenia (n¼ 346) and nonpsychotic controls
(n¼ 345), all of whom were Han Chinese from Taiwan, and con-
ducted further association and functional studies [68].

After sequencing all the amplicons of the 346 patients and 345
control subjects, we identified seven common polymorphisms in
the NRGN gene. SNP- and haplotype-based analyses indicated no
associations with schizophrenia. Additionally, we identified five rare
variants in six of the 346 patients, including three rare variants
located in the promoter region (g.-620A>G, g.-578C>G, and g.-
344G>A) and two rare variants located at 50UTR (c.-74C>G, and
c.-41G>A). No rare variants were found in the control patients. The
results of the reporter gene assay demonstrate that the regulatory
activities of constructs containing g.-620G, g.-578G, g.-344A, c.-74G,
or c.-41A are significantly lower when compared to the wild-type
construct. In silico analysis also demonstrated their influence on
the regulatory function of the NRGN gene. These data also lend
support to the hypothesis that multiple rare mutations are involved
in schizophrenia, and provide genetic clues that indicate the
involvement of NRGN in this disorder.

5. Summary and future research

In our series of genetic studies of schizophrenia, we used
a resequencing strategy to search for genetic variants in each
candidate gene in a sample of schizophrenic and control patients,
and assessed their associations with schizophrenia. Three candi-
date genes related to synaptic pathology in schizophrenia were
resequenced, but no common polymorphisms appeared to play
a major role in conferring susceptibility to schizophrenia in our
population. Additionally, we identified some rare patient-specific
variants. The results of reporter gene assays and software analysis
demonstrate the influence of reporter genes on the function of each
studied gene, suggesting that they may contribute to the patho-
genesis of schizophrenia.

Our findings support the “common disease, rare alleles” model
for explaining some cases of schizophrenia [69]. The hypothesis is
that the many mutations that predispose an individual to devel-
oping schizophrenia are highly penetrant and individually rare,
sometimes even specific to a single patient or family. In this model,
different patients harbored different mutations, either in the same
gene or in different genes, but each one carried only one or two
mutations. Given the fact that these individually rare variants
may not contribute, to a significant degree, to the heritability of
schizophrenia, their discovery is likely to be much more rewarding
than that of common polymorphisms in terms of practical appli-
cations, including our understanding schizophrenia’s etiology.

After identifying these rare patient-specific variants that are
related to synaptic pathology, family studies on the patients with
these rare variants should be conducted in order to clarify their
inheritance model, genotype/phenotype correlation, phenotypic
variability, and penetrance rate. Furthermore, cell-based and elec-
trophysiological experiments are warranted to verify their influ-
ence on signal transduction, membrane potential, cell proliferation,
migration, and differentiation (e.g., axonal outgrowth, dendrite
branching, and synaptogenesis). Furthermore, these findings will
be essential to the development of model animals, further patho-
genic studies, and novel drugs that could be used to treat this
devastating disorder.

It is noteworthy that the targeted resequencing of genes has
been used to successfully find associations between rare variants
with quantitative traits. However, this approach is currently limited
to selected candidate genes. Recently, massive parallel-sequencing
technologies, in conjunction with new DNA-enrichment technolo-
gies (e.g., exome capture), have been developed that allow the
sequencing of targeted regions in large samples of the human
genome [70]. In addition, exome capture allows unbiased investi-
gations into complete protein-coding regions of the genome.
Because rare variants are usually associated with a high rate of
penetrance, they may be much more likely to become the basis for
some sort of personalized medicine than those usually discussed in
relation to the common polymorphisms.
Acknowledgments

Funding for this study was provided by the National Science
Council of Taiwan (grant no. NSC 99-2314-B-303-010-MY3).
References

[1] Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, “just the facts”: what
we know in 2008, II: epidemiology and etiology. Schizophr Res 2008;102:
1e18.

[2] van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizo-
phrenia: review of epidemiological findings and future directions. Schizophr
Bull 2008;34:1066e82.

[3] Harrison PJ. The neuropathology of schizophrenia. A critical review of the data
and their interpretation. Brain 1999;122:593e624.

[4] Lawrie SM, Abukmeil SS. Brain abnormality in schizophrenia. A systematic and
quantitative review of volumetric magnetic resonance imaging studies. Br J
Psychiatry 1998;172:110e20.

[5] Pakkenberg B. Stereological quantitation of human brains from normal and
schizophrenic individuals. Acta Neurol Scand Suppl 1992;137:20e33.

[6] Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci
1995;3:89e97.

[7] McGuire PK, Frith CD. Disordered functional connectivity in schizophrenia.
Psychol Med 1996;26:663e7.

[8] Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit
based model of schizophrenia. Biol Psychiatry 1999;45:17e25.

[9] Eastwood SL. The synaptic pathology of schizophrenia: is aberrant neuro-
development and plasticity to blame? Int Rev Neurobiol 2004;59:47e72.

[10] Frankle WG, Lerma J, Laruelle M. The synaptic hypothesis of schizophrenia.
Neuron 2003;39:205e16.

[11] Fykse EM, Takei K, Walch-Solimena C, Geppert M, Jahn R, De Camilli P, et al.
Relative properties and localizations of synaptic vesicle protein isoforms: the
case of the synaptophysins. J Neurosci 1993;13:4997e5007.

[12] Sudhof TC, Lottspeich F, Greengard P, Mehl E, Jahn R. A synaptic vesicle
protein with a novel cytoplasmic domain and four transmembrane regions.
Science 1987;238:1142e4.

[13] Marazzi G, Buckley KM. Accumulation of mRNAs encoding synaptic vesicle-
specific proteins precedes neurite extension during early neuronal develop-
ment. Dev Dyn 1993;197:115e24.

[14] Alder J, Kanki H, Valtorta F, Greengard P, Poo MM. Overexpression of syn-
aptophysin enhances neurotransmitter secretion at Xenopus neuromuscular
synapses. J Neurosci 1995;15:511e9.

[15] Alder J, Lu B, Valtorta F, Greengard P, Poo MM. Calcium-dependent transmitter
secretion reconstituted in Xenopus oocytes: requirement for synaptophysin.
Science 1992;257:657e61.

[16] Daly C, Sugimori M, Moreira JE, Ziff EB, Llinas R. Synaptophysin regulates
clathrin-independent endocytosis of synaptic vesicles. Proc Natl Acad Sci USA
2000;97:6120e5.

[17] Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to syn-
aptophysin and is required for biogenesis of synaptic vesicles. Nat Cell Biol
2000;2:42e9.

[18] Chambers JS, Thomas D, Saland L, Neve RL, Perrone-Bizzozero NI. Growth-
associated protein 43 (GAP-43) and synaptophysin alterations in the dentate
gyrus of patients with schizophrenia. Prog Neuropsychopharmacol Biol
Psychiatry 2005;29:283e90.

[19] Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries CG, et al.
The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in



Y.-C. Shen, C.-H. Chen / Tzu Chi Medical Journal 24 (2012) 39e4242
thalamus and related cortical brain regions in schizophrenic brains. Schizophr
Res 1999;40:23e9.

[20] Eastwood SL, Harrison PJ. Synaptic pathology in the anterior cingulate cortex
in schizophrenia and mood disorders: a review and a Western blot study of
synaptophysin, GAP-43 and the complexins. Brain Res Bull 2001;55:569e78.

[21] Eastwood SL, Cotter D, Harrison PJ. Cerebellar synaptic protein expression in
schizophrenia. Neuroscience 2001;105:219e29.

[22] Eastwood SL, Harrison PJ. Detection and quantification of hippocampal syn-
aptophysin messenger RNA in schizophrenia using autoclaved, formalin-fixed,
paraffin wax-embedded sections. Neuroscience 1999;93:99e106.

[23] Eastwood SL, Burnet PW, Harrison PJ. Altered synaptophysin expression as
a marker of synaptic pathology in schizophrenia. Neuroscience 1995;66:
309e19.

[24] Eastwood SL, Harrison PJ. Decreased synaptophysin in the medial temporal
lobe in schizophrenia demonstrated using immunoautoradiography. Neuro-
science 1995;69:339e43.

[25] Glantz LA, Lewis DA. Reduction of synaptophysin immunoreactivity in the
prefrontal cortex of subjects with schizophrenia. Regional and diagnostic
specificity. Arch Gen Psychiatry 1997;54:943e52.

[26] Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR,
Kleinman JE, et al. Presynaptic proteins in the prefrontal cortex of patients
with schizophrenia and rats with abnormal prefrontal development. Mol
Psychiatry 2003;8:797e810.

[27] Hemby SE, Ginsberg SD, Brunk B, Arnold SE, Trojanowski JQ, Eberwine JH.
Gene expression profile for schizophrenia: discrete neuron transcription
patterns in the entorhinal cortex. Arch Gen Psychiatry 2002;59:631e40.

[28] Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WS.
Alterations in synaptic proteins and their encoding mRNAs in prefrontal
cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’.
Mol Psychiatry 1999;4:39e45.

[29] Landen M, Davidsson P, Gottfries CG, Grenfeldt B, Stridsberg M, Blennow K.
Reduction of the small synaptic vesicle protein synaptophysin but not the
large dense core chromogranins in the left thalamus of subjects with
schizophrenia. Biol Psychiatry 1999;46:1698e702.

[30] Mukaetova-Ladinska EB, Hurt J, Honer WG, Harrington CR, Wischik CM. Loss
of synaptic but not cytoskeletal proteins in the cerebellum of chronic
schizophrenics. Neurosci Lett 2002;317:161e5.

[31] Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels
of the growth-associated protein GAP-43 are selectively increased in associ-
ation cortices in schizophrenia. Proc Natl Acad Sci USA 1996;93:14182e7.

[32] Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ. Alterations of
hippocampal secreted N-CAM in bipolar disorder and synaptophysin in
schizophrenia. Mol Psychiatry 1999;4:467e75.

[33] Webster MJ, Shannon Weickert C, Herman MM, Hyde TM, Kleinman JE. Syn-
aptophysin and GAP-43 mRNA levels in the hippocampus of subjects with
schizophrenia. Schizophr Res 2001;49:89e98.

[34] Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P, et al.
Increased concentrations of presynaptic proteins in the cingulate cortex of
subjects with schizophrenia. Arch Gen Psychiatry 1997;54:559e66.

[35] Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ. Synaptic and
plasticity-associated proteins in anterior frontal cortex in severe mental
illness. Neuroscience 1999;91:1247e55.

[36] Mirnics K, Levitt P, Lewis DA. Critical appraisal of DNA microarrays in
psychiatric genomics. Biol Psychiatry 2006;60:163e76.

[37] Dann J, DeLisi LE, Devoto M, Laval S, Nancarrow DJ, Shields G, et al. A linkage
study of schizophrenia to markers within Xp11 near the MAOB gene.
Psychiatry Res 1997;70:131e43.

[38] Wei J, Hemmings GP. Searching for a locus for schizophrenia within chro-
mosome Xp11. Am J Med Genet 2000;96:4e7.

[39] Wei J, Hemmings GP. A further study of a possible locus for schizophrenia on
the X chromosome. Biochem Biophys Res Commun 2006;344:1241e5.

[40] Shen YC, Tsai HM, Ruan JW, Liao YC, Chen SF, Chen CH. Genetic and functional
analysis of the gene encoding synaptophysin in schizophrenia. Schizophr Res
2012. doi:10.1016/j.schres.2012.01.028.

[41] Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal
development and plasticity. Trends Neurosci 1997;20:84e91.

[42] Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, et al. Over-
expression of the neural growth-associated protein GAP-43 induces nerve
sprouting in the adult nervous system of transgenic mice. Cell 1995;83:269e78.

[43] Holtmaat AJ, Dijkhuizen PA, Oestreicher AB, Romijn HJ, Van der Lugt NM,
Berns A, et al. Directed expression of the growth-associated protein B-50/
GAP-43 to olfactory neurons in transgenic mice results in changes in axon
morphology and extraglomerular fiber growth. J Neurosci 1995;15:7953e65.

[44] Routtenberg A. Knockout mouse fault lines. Nature 1995;374:314e5.
[45] Strittmatter SM, Fankhauser C, Huang PL, Mashimo H, Fishman MC. Neuronal
pathfinding is abnormal in mice lacking the neuronal growth cone protein
GAP-43. Cell 1995;80:445e52.

[46] Eastwood SL, Harrison PJ. Hippocampal and cortical growth-associated
protein-43 messenger RNA in schizophrenia. Neuroscience 1998;86:437e48.

[47] Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, et al. Genome-
wide expression analysis reveals dysregulation of myelination-related genes
in chronic schizophrenia. Proc Natl Acad Sci USA 2001;98:4746e51.

[48] Weickert CS, Webster MJ, Hyde TM, Herman MM, Bachus SE, Bali G, et al.
Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with
schizophrenia. Cereb Cortex 2001;11:136e47.

[49] Blennow K, Bogdanovic N, Gottfries CG, Davidsson P. The growth-associated
protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in
schizophrenia. J Mol Neurosci 1999;13:101e9.

[50] Sower AC, Bird ED, Perrone-Bizzozero NI. Increased levels of GAP-43 protein
in schizophrenic brain tissues demonstrated by a novel immunodetection
method. Mol Chem Neuropathol 1995;24:1e11.

[51] Kaneko N, Muratake T, Kuwabara H, Kurosaki T, Takei M, Ohtsuki T, et al.
Autosomal linkage analysis of a Japanese single multiplex schizophrenia
pedigree reveals two candidate loci on chromosomes 4q and 3q. Am J Med
Genet B Neuropsychiatr Genet 2007;144B:735e42.

[52] Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-
analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry
2009;14:774e85.

[53] Shen YC, Tsai HM, Cheng MC, Hsu SH, Chen SF, Chen CH. Genetic and func-
tional analysis of the gene encoding GAP-43 in schizophrenia. Schizophr Res
2012;134:239e45.

[54] Ran X, Miao HH, Sheu FS, Yang D. Structural and dynamic characterization of
a neuron-specific protein kinase C substrate, neurogranin. Biochemistry 2003;
42:5143e50.

[55] Li J, Pak JH, Huang FL, Huang KP. N-methyl-D-aspartate induces neurogranin/
RC3 oxidation in rat brain slices. J Biol Chem 1999;274:1294e300.

[56] Rodriguez-Sanchez P, Tejero-Diez P, Diez-Guerra FJ. Glutamate stimulates
neurogranin phosphorylation in cultured rat hippocampal neurons. Neurosci
Lett 1997;221:137e40.

[57] Huang KP, Huang FL, Jager T, Li J, Reymann KG, Balschun D. Neurogranin/RC3
enhances long-term potentiation and learning by promoting calcium-
mediated signaling. J Neurosci 2004;24:10660e9.

[58] Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, et al. Involvement of
neurogranin in the modulation of calcium/calmodulin-dependent protein
kinase II, synaptic plasticity, and spatial learning: a study with knockout mice.
Proc Natl Acad Sci USA 2000;97:11232e7.

[59] Tsai G, Coyle JT. Glutamatergic mechanisms in schizophrenia. Annu Rev
Pharmacol Toxicol 2002;42:165e79.

[60] Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J. Neurogranin:
immunocytochemical localization of a brain-specific protein kinase C
substrate. J Neurosci 1990;10:3782e92.

[61] Dowling AL, Zoeller RT. Thyroid hormone of maternal origin regulates the
expression of RC3/neurogranin mRNA in the fetal rat brain. Brain Res Mol
Brain Res 2000;82:126e32.

[62] Iniguez MA, Rodriguez-Pena A, Ibarrola N, Aguilera M, Munoz A, Bernal J.
Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein
kinase-C substrate. Endocrinology 1993;133:467e73.

[63] Broadbelt K, Ramprasaud A, Jones LB. Evidence of altered neurogranin
immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex.
Schizophr Res 2006;87:6e14.

[64] Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D,
et al. Common variants conferring risk of schizophrenia. Nature 2009;460:
744e7.

[65] Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, et al.
Genome-wide association study identifies five new schizophrenia loci. Nat
Genet 2011;43:969e76.

[66] Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants
create synthetic genome-wide associations. PLoS Biol 2010;8:e1000294.

[67] Takeuchi F, Kobayashi S, Ogihara T, Fujioka A, Kato N. Detection of common
single nucleotide polymorphisms synthesizing quantitative trait association of
rarer causal variants. Genome Res 2011;21:1122e30.

[68] Shen YC, Tsai HM, Cheng MC, Hsu SH, Chen SF, Chen CH. Genetic and func-
tional analysis of the gene encoding neurogranin in schizophrenia. Schizophr
Res 2012. doi:10.1016/j.schres.2012.01.011.

[69] McClellan JM, Susser E, King MC. Schizophrenia: a common disease caused by
multiple rare alleles. Br J Psychiatry 2007;190:194e9.

[70] Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole
genomes. Human Molecular Genetics 2010;19:R145e51.

http://dx.doi.org/10.1016/j.schres.2012.01.028
http://dx.doi.org/10.1016/j.schres.2012.01.011

	Schizophrenia as a neuronal synaptic disorder related to multiple rare genetic mutations
	1. Introduction
	2. Genetic and functional analyses of the SYP gene in schizophrenia
	3. Genetic and functional analyses of the GAP-43 gene in schizophrenia
	4. Genetic and functional analyses of the NRGN gene in schizophrenia
	5. Summary and future research
	Acknowledgments
	References


