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Autism spectrum disorders, schizophrenia, and heroin addiction are all complex disorders with both
genetic and environmental components to their etiology. The most common chromosomal abnormality
in autism is a maternally derived duplication at 15q11-q13, which is where a cluster of gamma-ami-
nobutyric acid (GABA4) receptor subunit genes lies. In addition, copy number variations in this area have
been implicated in the pathogenesis of schizophrenia. These findings suggest that GABAergic signaling
might play a crucial role in contributing to susceptibility to the development of autism and schizo-

i(g;(;ﬁo_r(;ils; phrenia. Furthermore, there is considerable evidence supporting a role for GABA neurotransmission in
Autism mediating the addictive properties of heroin. Hence, this review explores recent findings related to the
GABAergic involvement of GABAergic system in autism, schizophrenia, and heroin addiction. We also outline the

implications that the presence of genetic variants in the GABA4 receptor subunit cluster at 15q11-q13
may have on the risk of developing these psychiatric disorders. Finally, we make recommendations for
future work that might help define the mechanisms underpinning the neuropathology that contributes
to these psychiatric disorders.

Copyright © 2012, Buddhist Compassion Relief Tzu Chi Foundation. Published by Elsevier Taiwan LLC. All
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1. Introduction

Segmental low copy repeats within chromosome 15q may
mediate rearrangements during meiosis and these may contribute
to the deletions or duplications in this region [1]. Paternal and
maternal derived deletions of 15q11-q13 are known to result in the
Prader-Willi and Angelman syndromes, respectively. Both condi-
tions have some symptoms associated with autism [2]. Patients
harboring a duplication overlapping the Prader-Willi/Angelman
syndrome critical region may present with distinctive clinical
manifestations, including hypotonia, developmental delay, intel-
lectual disability, epilepsy, dysmorphic features, and autistic
behavior [3]. In fact, the most common chromosomal abnormality
in autism is a maternally derived 15q11-q13 duplication that
accounts for 1%—3% of cases [4]. Nevertheless, chromosomal
abnormalities within the interval 15q11-q13 are not restricted to
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childhood-onset neurodevelopmental disorders and several recent
studies have implicated copy number variations (CNVs) within this
region as risk factors for schizophrenia and other psychoses [5—7].
Thus, genes located within the 15q11-q13 chromosomal area might
be considered as candidate genes for autism, schizophrenia, and
other psychiatric disorders. These findings also provide evidence
supporting the notion that an overlapping genetic etiology may
exist among these psychiatric diseases.

A cluster of gamma-aminobutyric acid (GABAa) receptor subunit
genes lies within the chromosome 15q11-q13 area. These are
GABRB3, GABRA5, and GABRG3, which encode subunits (3, a5, and
v3, respectively [2]. GABAa receptors are the major inhibitory
ligand-gated chloride channels in the human brain. Typical
synaptic GABAa receptors are heteropentamers comprising two «,
two B, and a y subunit [8]. Binding of GABA to GABA, receptors
activates and opens the chloride channels. In the adult brain, this
hyperpolarizes neurons and inhibits neuronal activity due to
a chloride influx. However, in the developing brain, GABA acts as an
excitatory neurotransmitter. In this circumstance, GABAa receptor
activation results in a net chloride outflow and depolarization of
the neurons because of the high intracellular chloride concentra-
tion [9]. Furthermore, it has been shown that GABAergic signaling
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system plays a crucial role during the whole period of neural tissue
development, from the proliferation of neural progenitor cells,
through migration and differentiation of neuronal precursor cells,
to synaptogenesis and synapse refinement [10]. Together, these
findings indicate that altered GABAergic signaling may contribute
substantially to the pathogenesis of neurodevelopmental disorders
such as autism in view of its important role during the entire period
of neural genesis. Since there is strong evidence recognizing
schizophrenia as having a neurodevelopmental origin [11—13], as
well as the possibility that the disease might a shared biological
pathway with autism [14], GABAergic signaling may be considered
to potentially contribute to vulnerability to schizophrenia.

Accumulating evidence has linked GABAergic neurotransmis-
sion with heroin addiction, which is a highly relapsing disease [15].
There is considerable evidence indicating a significant genetic
contribution to the development of substance abuse, and genetic
studies have been successful at identifying genetic variants that act
as risk factors for heroin addiction. Although research on the effect
of the GABAergic signaling system on heroin addiction is still at an
early stage, study in this area might serve as a basis for under-
standing the mechanism underlying this disease.

Here we review the evidence for the role of the GABAergic
signaling in autism, schizophrenia, and heroin addiction. We also
provide a brief overview of the genetic clues indicating that vari-
ants in the GABAa receptor subunit cluster at 15q11-q13 might
influence the risk of developing these psychiatric disorders.

2. GABAergic signaling and the GABA, receptor subunit gene
cluster at 15q11-q13 in relation to autism

Autism spectrum disorders (ASDs), encompassing autistic
disorder, Asperger syndrome, and pervasive developmental
disorder-not otherwise specified (PDD-NOS), are a constellation of
neurodevelopmental disorders characterized by clinical hallmarks
related to deficits in social interactions and language development,
as well as the presence of restricted interests and/or repetitive
behaviors. The prevalence of ASD is estimated to be approximately
one per 110 children [16]. ASD affects males more than females,
with a male-to-female ratio of approximately 4:1 [17]. The
concordance rate for monozygotic twins is 70%—90% compared
with that for dizygotic twins of 0%—10% [18,19]. In addition, the risk
to siblings of being related to an affected individual is 2%—8%,
which is 20—80 times higher than that in the general population
[20]. These findings provide strong evidence for the contribution of
genetic factors to the development of ASD.

A 48%—61% decrease in the glutamic acid decarboxylase 65 kDa
and 67 kDa proteins (GAD65 and GAD67), which are isoforms of the
rate-limiting enzymes in the synthesis of GABA, has been reported
in the parietal and cerebellar brain areas of subjects with autism
[21]. In addition, reductions in the protein levels of GABAa receptor
subunits «1-5, f1, and B3 have been observed in the brain of
subjects with autism [22,23]. In contrast, the mRNA levels of the a4,
a5, and B1 subunits in various regions of the brain are not consis-
tent [23]. In a postmortem study, Fatemi and colleagues detected
significant reductions in the mRNA levels of the o4, a5, and B1
subunits in the BA9 area of patients with autism, while the mRNA
levels for the o4, «5, and 1 subunits in cerebella of subjects with
autism were significantly increased; this suggests discordant
results between the proteins and mRNAs for some subunits.
Moreover, aberrant GABAergic signaling has been shown to result
in an autistic-like phenotype in mice [24]. Together, these results
imply that an imbalance between the excitatory and inhibitory
neurotransmission pathways within the central nervous system is
involved in the pathogenesis of ASD [25].

It has long been recognized that a maternally derived 15q11-q13
duplication is responsible for 1%—3% of autism. Several studies have
reported a genetic association between common variants in the
GABAA4 receptor subunit cluster at 15q11-q13 and autism [26—28],
supporting the existence of risk alleles for autism in this region.
Among the three genes, GABRB3 is the most extensively studied
[29]. Furthermore, the rare mutation hypothesis has gained
increasing appreciation recently [30] due to a study reporting that
a maternally inherited rare mutation in the signal peptide of
GABRB3 is associated with autism [31]. This mutant subunit has
been proven to be unstable compared with the wild type subunit
and may cause synaptic dysfunction that is relevant to autism. In
addition, the authors have provided the first evidence of a rare
coding variant of GABRB3 that is associated with autism. These
findings provide further support not only for the involvement of
GABRB3, but also for impaired GABAergic signaling being associated
with autism.

3. GABAergic signaling and GABA, receptor subunit gene
cluster at 15q11-q13 in relation to schizophrenia

Schizophrenia is a neurodevelopmental disorder with a strong
genetic component that affects approximately 1% of the worldwide
population [32]. The clinical hallmarks are hallucinations, delu-
sions, cognitive deficits, and affect disturbances. The heritability of
schizophrenia is estimated to be approximately 80% [33]. Despite
recent advances in genomic technology, the exact mechanism
underlying schizophrenia remains largely unknown.

Just as for autism, an imbalance between excitatory and inhib-
itory neurotransmission pathways has also been implicated in the
pathogenesis of schizophrenia [34]. The involvement of the GABA
neurotransmission pathway in schizophrenia has been indicated by
multiple lines of evidence. For example, in postmortem studies,
reduced mRNA expression of the presynaptic GABA neurotrans-
mission component, glutamic acid decarboxylase 67 kDa protein
(GAD67), has been noted in the GABAergic interneurons in the
dorsolateral prefrontal cortex (DLPFC) of subjects with schizo-
phrenia [35,36]. The altered GABAergic signaling found in schizo-
phrenia is not restricted to the DLPFC; in the lateral cerebellar
hemisphere, a decrease in mRNA expression of the GAD65 and
GADG67 together with an increase in mRNA expression of the GABAA
receptor a6 and d subunits has also been found [37]. Similar
reductions in mRNA expression of the GAD65 and GAD67 have
also been revealed in the hippocampus of patients with schizo-
phrenia [38].

Further evidence for the importance of the 15q11-q13 region
has emerged from genetic studies of this region. Microdeletions at
15q11.2 and 15q13.3 are now considered to be susceptibility factors
for schizophrenia [5,6,39]. Furthermore, it has been documented
that the frequency of a 6-Mb maternally derived duplication of
chromosome 15q11.2-q13.1 among patients with schizophrenia is
significantly higher than that among control subjects [7]. The
possible mechanism of action by which CNVs predispose individ-
uals to schizophrenia has been hypothesized to include gene
dosage effects, position effects, and disruption of genes [40]. Thus,
genes located within this region might be considered as candidates
for investigating their potential involvement in schizophrenia. A
previous genetic association study demonstrated that a micro-
satellite marker of GABRB3 is associated with manifestation of
hallucinations in subjects with schizophrenia [41]. To date,
although no rare mutation has been identified for schizophrenia in
the GABAA receptor gene cluster located in this region, identifying
disease-causing or disease-modifying mutations in this gene
cluster or genes located within 15q11-q13 remains a hypothetical
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possibility for schizophrenia on the basis of the prior knowledge of
the biological functions of the products of these genes.

4. GABAergic signaling and GABA, receptor subunit gene
cluster at 15q11-q13 in relation to heroin addiction

Heroin, which is a semisynthetic form of morphine, has been
considered to be one of the most addictive substances in the world.
Heroin addiction is a chronic highly relapsing disease characterized
by obsession, compulsion, or physical/psychological dependence.
The heritability of heroin addiction is estimated to be approxi-
mately 40%—60% [42], implying that genetic factors may play
a crucial role in predisposing individuals to this disorder. Since this
complex disorder can cause a huge economic burden on the
community [43], genetic studies identifying these variants are
needed to explore its possible pathogenesis. However, little is
known about the precise mechanism underlying heroin addiction.

It has been proposed that the binding of opioids to the opioid
receptors hyperpolarizes GABA-containing interneurons in the
ventral tegmental area and inhibits GABA release, which in turn
may disinhibit dopaminergic neurons [44]. This enhances dopa-
mine release and increases the firing rate of dopamine-containing
neurons in the nucleus accumbens, which has a critical role in
the reinforcing effects of opioids abuse [45]. Furthermore, it has
been shown that an elevation of the mesolimbic GABA concentra-
tion is able to block heroin self-administration in rats [15]. Taken
together, these results support a role for the GABAergic system in
opioid addiction. Given that heroin binds to the opioid receptors
present on GABA interneurons and that the GABA concentration
might play a role in heroin self-administration, GABA receptor
subunit genes need to be considered as candidates for potential
involvement in developing heroin addiction and need to be
investigated.

A recent genetic study showed that a single nucleotide poly-
morphism (SNP) (rs7165224) located close to the GABRB3 gene,
which encodes the GABAA receptor 3 subunit, is associated with
heroin addiction in African Americans [46]. Although this associa-
tion was not significant after correction for multiple testing, the
contribution of GABRB3 to vulnerability to heroin addiction cannot
be completely excluded.

5. Conclusions and future directions

Autism, schizophrenia, and heroin addiction are all complex
diseases with complex genetic etiologies. Significant progress has
been made in searching for genes and susceptibility alleles that
increase the risk of these diseases. Despite the progress in these
genetic studies, a comprehensive understanding of the molecular
mechanisms of these diseases is still lacking. Furthermore,
pathway-based investigations have only recently been utilized to
unravel the mystery of such complex diseases [47]. Thus, further
exploration of various neurotransmission pathways, such as glu-
tamatergic signaling and cholinergic signaling, is warranted.

The last decade has seen a revolution in genetic technologies,
and now identifying numerous genetic variants can be achieved in
a significant number of individuals within a limited time. For
example, exome sequencing has been developed and used to search
for protein-altering mutations that are responsible for complex
disorders [48,49]. This approach effectively allows the identifica-
tion, analysis and study of functional variants in known and
unknown genes. In addition, much work is still required that
focuses on the relationship between genes and other biologic
variables, including the environment, in order to broad our
understanding of the neurobiology of these type of disorders. These
approaches will be crucial to the development of better diagnosis of

diseases like autism, schizophrenia, and heroin addiction as well as
improved treatment strategy of these diseases.
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