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Abstract

This review considers the role played by neuropeptides which, unlike GABA 
and glutamate (acting at ligand-gated ion channels), modulate cardiores-
piratory reflexes slowly through metabotropic receptors. Our findings reveal 
that reflexes may be differentially modulated so that depending on which 
neuropeptide agonist is microinjected into the rostral ventrolateral medulla, 
differential effects on reflexes are observed. This means that, for example, 
the mu opioid agonist DAMGO will attenuate the sympathetic baroreflex 
but not the somatosympathetic reflex. On the other hand, the delta agonist 
DPDPE attenuates the somatosympathetic reflex but has no effect on baro-
reflex function. These, and other data with other peptides, suggest that 
neuropeptides may play a crucial role in the modulation of different adap-
tive reflexes. [Tzu Chi Med J 2009;21(2):99–102]
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1. Introduction

Central regulation of cardiorespiratory function is the 
basis of our scientific knowledge of critical care med-
icine. Despite this, the neuronal pathways, reflexes [1], 
generators of tonic activity [2–4], neurotransmitters 
[3,5–10] and regulators of intracellular control mech-
anisms [11–13] are only now coming into focus follow-
ing three to four decades of investigation from our 
own work (see above) and that of others (e.g., see 
references 14–18). More recently, attention is being fo-
cused on interactions between systems at a central 
level. Again, although known to exist for sometime [19], 
interactions between systems are only now being stud-
ied in detail [20]. What is the significance of studying all 
of these features of neuronal interaction in systems that 
are important for central cardiorespiratory regulation?

At a basic level, we are concerned with the tempo-
ral, frequency and structural aspects of neuronal con-
trol that influence the tonic regulation of airways, 
breathing and circulation. Together, these features 
dictate how often and when a neuron fires, which of 
its complement of neurotransmitters are released and 
if this release can exert plastic changes to strengthen 
the connections between neurons. Features such as 
firing frequency may have quite complex effects. Early 
studies from Guyenet’s laboratory on presympathetic 
neurons clearly revealed a frequency-dependent ef-
fect on action potential amplitude. Presumably, such 
changes affect neurotransmitter quantities released 
at the synapse. Frequency dependence of neurotrans-
mitter release is a well known phenomenon and it 
was recently reported to be due to size exclusion at 
release sites in adrenal chromaffin cells [21]. Use of 
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dependent structural changes at synapses is well 
known in many nervous systems [22]. Taken together, 
these features of neuronal interaction demonstrate 
that simple electrical wiring diagrams, although use-
ful starting points, are not adequate for describing the 
full dynamic range of neuronal interactions.

2. Cardiorespiratory pathways

Space does not allow a full description of brainstem 
and spinal cord cardiovascular and respiratory regu-
lation. The broad details of these have been expertly 
addressed in several recent reviews and books 
[1,20,23,24]. Broadly, within the brainstem are pre-
sympathetic neurons (PSN) whose coordinated activ-
ity leads to the generation of tonic activity [25], which 
is in turn transmitted via bulbospinal axons to sym-
pathetic preganglionic neurons (SPN—because their 
axons enter ganglia) in the thoracolumbar spinal cord. 
There are some differences in the locations and mix-
ing of SPN in vertebrates, but in mammals the SPN 
are mostly found in the intermediolateral nuclei. SPN 
at different levels innervate different sympathetic 
post-ganglionic neurons (SPGN—because their axons 
are found exiting ganglia). On top of this tonic activity, 
higher centers and adaptive reflexes including the 
baroreceptor and somatosympathetic reflexes, exert 
a modulatory effect. Apart from any inherent tone 
present within PSN, two key influences regulate sym-
pathetic activity: respiratory activity and baroreceptor 
inputs. The importance of respiratory inputs in the 
conscious state cannot be underestimated [26]. Tonic 
respiratory activity in the rat is localized to a small 
region termed the preBötzinger complex (preBötC). 
The preBötC is located in ventral brainstem dorsal to 
the rostral ventrolateral medulla but caudal to the 
Bötzinger neurons. It was originally described in neo-
natal rat as the minimal region from which respiratory-
like nerve activity could be generated [27], but a 
homologous region is present in adult rat [28]. This 
region is crucial for the initiation of respiratory activity 
in eupneic conditions. Destruction of it with agents 
such as substance P-saporin have profound effects 
on respiratory rhythm generation [29]. From this site, 
the respiratory rhythm is transmitted, transformed and 
appropriately altered to permit many of the activities 
associated with normal respiration, including vocal 
cord opening and diaphragmatic contraction during 
inspiration.

3. Role of neuropeptides

Most of the neurotransmission that occurs in the cen-
tral nervous system appears to require the obligatory 
release of excitatory (e.g., glutamate) or inhibitory 

(GABA and glycine) amino acid neurotransmitters. 
Certainly, blockade of excitatory neurotransmission in 
the caudal ventrolateral medulla will entirely block the 
baroreceptor reflex [30] and modulate respiratory 
activity [31]. Despite this clearly crucial and obligatory 
role for rapidly acting neurotransmitters that exert their 
effects through ligand-gated receptors and rapid 
modulation of Na+, Cl–, K+ and Ca++ conductances with 
consequent changes in membrane potential in the 
millisecond time range, other neurotransmitters exert 
effects that may be even more potent and occur over 
longer time frames. Such neurotransmitters—of which 
the neuropeptides are surely a classic example—exert 
their effects through actions on, amongst others, 
7-transmembrane spanning receptors, that are coupled 
to many second messenger systems including kinases 
and G-proteins. Recently, it was reported that in primary 
sensory neurons, substance P suppresses GABA-A 
receptor function by activation of protein kinase C 
[32,33]. This mechanism was subsequently shown to 
occur in sympathetic regulatory neurons in the para-
ventricular nucleus [34]. In our own studies, we have 
focused on the effects of neuropeptides on the activity 
and function of neurons in the PSN in the rostral ven-
trolateral medulla. This work revealed that mu opioid 
receptor activation suppresses splanchnic and lumbar 
sympathetic nerve activity and sympathetic barore-
ceptor function (decrease in slope and range) but has 
no effect on the somatosympathetic reflex [3]. Delta 
opioid receptors are also present in the rostral ventro-
lateral medulla and appose sympathoexcitatory C1 
neurons [6]. Activation of delta receptors does not 
affect baroreceptor function but causes a significant 
decrement in the somatosympathetic reflex [3].

In addition to their presence in the preBötC, sub-
stance P (neurokinin 1) receptors are present through-
out the ventral medulla [35]. Like delta receptor 
activation, neurokinin 1 receptor activation selectively 
attenuates the somatosympathetic reflex without af-
fecting other adaptive reflexes. We term this differen-
tial responsiveness of PSN “functional fingerprinting” 
as a corollary to “chemical coding”.

As a cautionary note, it must be stated that our 
work is pharmacological so that we cannot be certain 
of the physiological role of the receptors that we ago-
nize or antagonize. Similarly, one must be careful in 
interpreting studies that use substance P-saporin since 
such studies destroy the neuron without clearly indi-
cating the function of the receptor. Perhaps future 
studies with RNA silencing will be more productive in 
this regard [36].

4. Conclusion

Studies of neuropeptides in the brainstem and spinal 
cord have revealed many new features about the way 
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that cardiorespiratory regulation occurs. The use of 
activation of reflexes, either by electrical stimulation 
of nerves or by “naturalistic activation”, combined with 
the measurement of multiple autonomic outputs, 
provides an extremely valuable method for interro-
gating the role that neurotransmitters of all types, 
including peptides, play in the control of the heart 
and blood vessels. It is to be hoped that approaches 
of this type will ultimately assist in the targeting of 
therapies for disorders such as hypertension.
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