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Abstract

Hypoxia and hypercapnia are among the strongest challenges to the cardio-
respiratory system, and these responses are altered by prenatal nicotine 
exposure. However the mechanism(s) responsible for these cardiorespi-
ratory responses, and their alteration by prenatal nicotine exposure are 
unknown. We used an in vitro medullary slice that allows simultaneous 
examination of rhythmic respiratory-related activity and synaptic neuro-
transmission to cardiac vagal neurons (CVNs) that control heart rate. 
Respiratory-related increases in excitatory neurotransmission only oc-
curred upon recovery from hypoxia/hypercapnia in unexposed animals. 
These responses were mediated in part by purinergic receptors. Prenatal 
nicotine exposure transformed central cardiorespiratory responses; CVNs 
received a respiratory-related neurotransmission not during recovery 
but during hypoxia/hypercapnia which was wholly dependent upon nico-
tinic receptor activation. In the presence of nicotinic antagonists, the re-
sponses in prenatal nicotine animals reverted to the pattern of responses 
in unexposed animals. These data identify a new functional role for purin-
ergic receptors in the cardiorespiratory responses to hypoxia/hypercapnia 
and their role in occluding nicotinic receptor activation with prenatal 
nicotine exposure. [Tzu Chi Med J 2008;20(1):1–10]

Article info

Article history:
Received: September 1, 2007
Revised: December 4, 2007
Accepted: December 6, 2007

Keywords:
Ambiguus
Cardiac
Nicotinic
Parasympathetic
Purinergic

*Corresponding author. Department of Pharmacology and Physiology, George Washington 
University, 2300, Eye Street N.W., Washington, DC 20037, Washington, USA.
E-mail address: dmendel@gwu.edu

1. Introduction

The respiratory and cardiovascular systems are highly 
intertwined, both anatomically and physiologically. 
The most ubiquitous cardiorespiratory interaction is 
respiratory sinus arrhythmia. During each respiratory 
cycle, the heart beat slows during expiration and 

heart rate increases during inspiration. Respiratory 
sinus arrhythmia helps match pulmonary blood flow 
to lung inflation and maintain the appropriate dif-
fusion gradient for oxygen in the lungs [1]. Recent 
work, both from in vivo and in vitro preparations, 
has shown that respiratory sinus arrhythmia does not 
involve excitatory pathways but rather is mediated 
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mainly by an increase in both inhibitory GABAergic 
and glycinergic neurotransmission to cardiac vagal 
neurons (CVNs) during inspiration [2–4].

Among the strongest interactions between the car-
diovascular and respiratory systems are the responses 
to hypoxia and hypercapnia. Hypoxia and hypercap-
nia initially elicit an increase, followed by a dramatic 
decrease in respiratory frequency [5]. Prolonged hyp-
oxia and hypercapnia eventually produces a termi-
nal apnea. Likewise, hypoxia and hypercapnia evoke 
an initial transient increase in heart rate followed by 
a parasympathetically mediated bradycardia and, ulti-
mately, cessation of cardiac contractions [6–8]. The 
reduction in heart rate and respiratory frequency in 
response to hypoxia normally serves to reduce the 
metabolic demand of the cardiac and respiratory 
muscles, and thus prolong survival [7].

Exaggeration of this protective response to hyp-
oxia, however, could be detrimental. Sudden infant 
death syndrome (SIDS) is the leading cause of infant 
death in the post neonatal period [9–12]. Infants that 
succumb to SIDS typically experience a severe brady-
cardia that precedes or is accompanied by centrally 
mediated apnea [10,13]. Bradycardia is also the most 
prevalent and predictive event in infants monitored 
for apparent life threatening events [14]. Although 
the cause(s) of SIDS remains unknown, it has been 
speculated that an exaggeration of cardio respiratory 
control, and in particular the parasympathetic con-
trol of cardiac function, may be involved [11,15–18]. 
Chronic fetal nicotine exposure by maternal smok-
ing dramatically increases the risk of SIDS by 2–4 
times [19,20].

2.  Parasympathetic control of cardiac 
function

Heart rate is dominated by the activity of the cardio-
inhibitory parasympathetic nervous system. In con-
scious and anesthetized animals, there is a tonic level 
of parasympathetic nerve firing and little, if any, sym-
pathetic activity at rest (humans [21], dogs [22], cats 
[23], rats [24,25]). During increases in arterial pres-
sure, the initial reflex-induced slowing of the heart is 
caused primarily, if not exclusively, by increases in 
cardiac vagal nerve activity [22,25]. During decreases 
in arterial pressure, the baroreflex-induced tachy-
cardia is caused mostly by decreases in parasympa-
thetic in addition to increases in sympathetic nerve 
activity [18,22,26]. When both parasympathetic and 
sympathetic activities are present, parasympathetic 
activity generally dominates the control of heart rate. 
Increases in parasympathetic activity evoke a brady-
cardia that is more pronounced when there is a high 
level of sympathetic firing [27]. When there is a moder-
ate or high level of parasympathetic activity, changes 

in sympathetic firing elicit negligible changes in heart 
rate [27].

3.  Neurophysiology of cardiac vagal 
activity

The intrinsic firing properties and voltage gated cur-
rents in identified CVNs in the brainstem have recently 
been characterized [28–33]. These results demon-
strate that in the absence of synaptic activity, CVNs 
in the nucleus ambiguus are normally silent. CVNs do 
not display any pacemaker-like activity such as repeti-
tive or phasic depolarizations or action potentials. 
However, only a small depolarizing current (100 pA) 
is needed to evoke repetitive firing in CVNs, and this 
activity occurs with little delay and minimal spike 
frequency adaptation during any maintained depolar-
izing currents. The voltage gated currents and firing 
characteristics of CVNs enable them to follow fast 
synaptic drive closely as well as integrate long-lasting 
modulatory influences.

The activity of CVNs in the brainstem is controlled 
by the activation and modulation of three major syn-
aptic inputs; glutamatergic, GABAergic and glyciner-
gic [4,29,31–56]. Stimulation of the nucleus tractus 
solitarius (NTS) evokes a glutamatergic pathway that 
activates both NMDA and non-NMDA postsynaptic cur-
rents in CVNs [31,37]. This pathway may constitute 
the essential link between increases in blood pres-
sure and afferent baroreceptor activity, which activates 
neurons in the NTS, and the reflex compensatory de-
crease in heart rate caused by increases in efferent 
cardioinhibitory cardiac vagal activity. Additionally, 
there is a GABAergic innervation of CVNs that can also 
be activated upon stimulation of the NTS [31,41]. 
Stimulation of afferents in the central end of a sec-
tioned vagus nerve evokes both GABAergic and glu-
tamatergic responses in CVNs [53]. Capsaicin, which 
inactivates C-fibers, increased the latency of the 
GABAergic response without changing the latency of 
the glutamatergic responses [53]. It is possible that 
this inhibitory GABAergic pathway evoked from vagal 
nerve or NTS stimulation is involved in patterning 
cardiac vagal activity which is bursting and synchro-
nous with the cardiac cycle.

4.  Mechanisms of respiratory sinus 
arrhythmia

While feedback from pulmonary stretch receptors, 
and direct respiratory-related changes in venous return 
and cardiac stretch can evoke respiratory-related 
changes in heart rate, the dominant source of respi-
ratory sinus arrhythmia originates from the brainstem 
[57]. Respiratory sinus arrhythmia persists when the 
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lungs are stationary (caused by muscle paralysis or 
constant flow ventilation), and the respiratory modula-
tion of heart rate remains synchronized with brainstem 
respiratory rhythms even if artificial ventilation of the 
lungs, and chemoreceptor activation, occurs at differ-
ent intervals [18,58–61]. In both animals and humans, 
respiratory sinus arrhythmia is mediated via cardiac 
vagal activity. Respiratory sinus arrhythmia persists in 
animals upon sectioning sympathetic pathways, and in 
quadriplegic patients with spinal cord injury and sym-
pathetic dysfunction [58–62]. Blockade of cardiac vagal 
activity abolishes respiratory sinus arrhythmia [63].

Cardiac vagal nerve activity has pronounced respi-
ratory modulation. Cardiac vagal fibers fire most rap-
idly post inspiration and are often silent in inspiration 
[23,26,64]. Respiratory inputs do not seem to alter 
baroreceptor and chemoreceptor synapses at their first 
synapse in the NTS [18,26]. Rather, the little in vivo 
data that exist suggest that cardiorespiratory interac-
tions occur within the nucleus ambiguus [2,26].

To identify the cellular mechanisms responsible 
for the inhibition of CVNs during inspiratory activity, 
GABAergic and glycinergic synaptic events were both 
isolated for examination. During inspiratory bursts, 
the frequency of both spontaneous GABAergic and 
glycinergic synaptic events in CVNs significantly in-
creased [4]. Focal application of the nicotinic antagonist 
dihydro-beta-erythroidine (DHβE) in an α4β2 selec-
tive concentration (3 µM) abolished the respiratory-
evoked increase in GABAergic frequency. In contrast, 
the increase in glycinergic frequency during inspira-
tion was not altered by nicotinic antagonists [4].

5.  Cardiorespiratory responses to 
hypoxia and hypercapnia

Hypoxia and hypercapnia evoke profound cardiovas-
cular and respiratory responses. Hypoxia initially 
elicits a transient increase, followed by a maintained 
decrease in respiratory frequency [5]. Respiration 
changes from the normal eupnic pattern of breath-
ing to gasping in response to hypoxia and hypercap-
nia which increases the chance of autoresuscitation 
[5]. Gasping is characterized by a lower frequency of 
inspiratory bursts that are shorter in duration than 
eupnic inspiratory activity [65,66]. Gasping is an 
important component of autoresuscitation and is a 
highly effective gas exchange pattern [5].

6.  Heart rate responses to hypoxia and 
hypercapnia

Both hypoxia and hypercapnia evoke a pronounced 
bradycardia that is mediated via increased parasym-
pathetic activity. Studies in humans have shown that 

hypoxia-induced bradycardia can be blocked by atro-
pine and are absent in heart transplant recipients 
[67–71]. The hypoxia-induced decrease in heart rate 
in experimental animals is prevented by prior appli-
cation of atropine or vagotomy [72–77]. The changes 
in parasympathetic cardiac activity in response to 
hypoxia originate from the medulla since the dis-
charge of cardiac efferent fibers in the central end 
of the transected vagus nerve is increased during 
hypoxia [78]. Similarly, hypercapnia evokes a brady-
cardia that is reduced by atropine [76,79]. Although 
peripheral chemoreceptors may also be involved, 
hypoxia-induced bradycardia persists after section of 
both the carotid sinus and aortic nerves, indicating 
that chemoreceptors within the central nervous sys-
tem can activate pathways that increase the activity 
of CVNs [80–82]. The reduction in heart rate and res-
piratory frequency in response to hypoxia normally 
serves to reduce the metabolic demand of the car-
diac and respiratory muscles, and thus prolong sur-
vival [83,84]. However, the bradycardia associated 
with sleep apnea can be detrimental and is likely 
mediated, in part, by increases in parasympathetic 
cardiac activity since atropine is partially effective in 
preventing the majority of arrhythmias during and 
after sleep apnea [85].

7.  Fetal exposure to nicotine alters 
cardiorespiratory control and 
increases the risk of SIDS

Although the cause(s) for SIDS remains unknown it 
has been speculated that an abnormality of cardio-
respiratory control, and in particular the parasympa-
thetic control of cardiac function, may be involved 
[11,15–18]. Chronic fetal nicotine exposure by mater-
nal smoking dramatically increases the risk of SIDS. 
Epidemiological studies indicate that smoking during 
pregnancy increases the risk of SIDS by 2–4 times 
[19,20]. Nicotine crosses the placental blood barrier 
and has been found in the blood and pericardial 
fluid of SIDS infants [86]. In infants who succumb 
to SIDS, a centrally mediated slowing of the heart, 
which precedes or accompanies apnea, is likely criti-
cally involved [11,17]. Bradycardia is also the most 
prevalent and predictive event in infants monitored 
for apparent life threatening events [14].

In animal models of SIDS, prenatal nicotine expo-
sure augments the parasympathetic and diminishes 
the sympathetic control of heart rate [87]. Prenatal 
exposure to nicotine also exaggerated the cardiovas-
cular responses to mild hypoxia. In control rats, hyp-
oxia typically evokes an initial tachycardia followed 
by a slight decrease in heart rate, whereas in nico-
tine exposed animals, there was no tachycardia and 
heart rate declined rapidly and precipitously within 
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a few minutes [88]. The changes in respiration were 
indistinguishable between the control and nicotine 
exposed animals, indicating that the nicotine exposed 
animals had an exaggerated centrally mediated in-
crease in cardiac vagal activity in response to the 
respiratory stimulus [88].

The mechanisms responsible for the altered re-
sponses with prenatal nicotine exposure likely involve 
altered neurotransmission within the central nervous 
system. Numerous studies in other systems have 
demonstrated that chronic nicotine exposure causes 
an exaggerated response to subsequent acute nico-
tine exposures [89–91]. Changes in the subtype, num-
ber and characteristics of the nicotinic receptors are 
likely involved. Chronic nicotine exposure has been 
shown to decrease the number of low affinity and in-
crease the number and fraction of high affinity nico-
tinic receptors [92]. The acetylcholine evoked ionic 
currents from these upregulated nicotinic receptors 
are augmented twofold or more, and are less sensi-
tive to desensitization [92].

Since prenatal exposure to nicotine may be criti-
cal in the pathophysiology of SIDS and nicotinic 
receptors are essential for the inhibition of CVNs dur-
ing inspiration, a recent study from this laboratory 
tested the hypothesis that prenatal nicotine alters 
hypoxia-induced changes in GABAergic and glyciner-
gic inhibitory postsynaptic current (IPSC) frequency 
in CVNs [3]. Hypoxia evoked a biphasic change in the 
frequency of both GABAergic and glycinergic IPSCs 
in CVNs, comprised of an initial increase, followed 
by a decrease in IPSC frequency. The initial inhibi-
tion of CVNs would result in a tachycardia due to 
a withdrawal of parasympathetic activity. The subse-
quent decrease in GABAergic IPSC frequency would 
elicit a bradycardia due to increased parasympathetic 
outflow to the heart.

Prenatal exposure to nicotine changed the 
GABAergic response to hypoxia from a biphasic re-
sponse to a precipitous decrease in spontaneous 
GABAergic IPSC frequency. Prenatal nicotine expo-
sure abolished the initial hypoxia-induced increase 
in spontaneous GABAergic IPSC frequency that oc-
curred in unexposed animals and caused a greater 
and more rapid reduction in spontaneous GABAergic 
frequency during hypoxia [3]. In addition, the en-
hanced increase in GABAergic IPSC frequency during 
inspiration caused by prenatal nicotine exposure was 
rapidly abolished during hypoxia [3]. An exaggerated 
disinhibition of CVNs would induce a more rapid in-
crease in parasympathetic outflow to the heart and a 
bradycardia in vivo.

In animals exposed to nicotine prenatally, the time 
course of the changes in spontaneous GABAergic 
IPSC frequency observed in this in vitro study also 
very closely mimic the heart rate changes observed 
in in vivo experiments using animals that have been 

exposed to nicotine prenatally [88]. Compared to 
unexposed animals, animals prenatally exposed to 
nicotine respond to hypoxia with a greater decrease 
in heart rate. This impaired heart rate control reduces 
hypoxia tolerance in neonatal rats, and has been 
hypothesized to be the mechanism which accounts 
for the relationship between maternal smoking and 
SIDS [11,13,88]. The enhanced hypoxia-induced with-
drawal of GABAergic neurotransmission in animals 
exposed to nicotine prenatally provides one likely 
neurochemical mechanism for the substantial and 
potentially lethal exaggeration of the hypoxia-induced 
bradycardia observed in rats prenatally exposed to 
nicotine.

In addition, prenatal nicotine exposure alters the 
types of nicotinic receptors that facilitate excitatory 
inputs to CVNs [93]. Nicotinic receptor activation of 
CVNs and facilitation of glutamatergic neurotrans-
mission to CVNs is endogenously active in both un-
exposed animals and in animals exposed to nicotine 
in the prenatal period [93]. Neostigmine (10 µM), an 
acetylcholinerase inhibitor, significantly increases 
the holding current, amplitude and frequency of min-
iature excitatory postsynaptic current (mEPSC) gluta-
matergic events in CVNs [93]. In unexposed animals, 
the nicotine elicited facilitation of mEPSC frequency, 
but not mEPSC amplitude or inward current, is com-
pletely dependent on activation of α-7 subunit con-
taining nicotinic receptors since the nicotine evoked 
increase in mEPSC frequency can be blocked by 
α-bungarotoxin. The nicotine mediated inward cur-
rent and increase in mEPSC amplitude do not involve 
α4β2 nicotinic receptors since DHβE at a concentra-
tion of 3 µM, which selectively blocks α4β2 nicotinic 
receptors, had no effect [93,94].

Prenatal nicotine exposure significantly increases 
the endogenous activation of nicotinic receptors re-
sponsible for an inward current and augmentation 
of mEPSC frequency and amplitude in CVNs. In addi-
tion, prenatal nicotine exposure evoked both an 
exaggeration and change in nicotinic receptors re-
sponsible for these responses [93]. In prenatal nico-
tine exposed animals, the increase in holding current 
was partially dependent on α-7 subunit containing 
nicotinic receptors, whereas in unexposed animals, 
α-bungarotoxin had no effect on the holding current 
responses. Furthermore, whereas in control animals, 
α-bungarotoxin abolished the increase in mEPSC 
frequency, in prenatal nicotine exposed animals, 
α-bungarotoxin only partially reduced the increase in 
mEPSC frequency [93]. Therefore, prenatal nicotine 
exposure elicits the postsynaptic expression of α-7 
subunit containing nicotinic receptors in CVNs, and 
nicotinic receptors other than α-7 nicotinic receptors 
are expressed at presynaptic glutamatergic terminals 
and can facilitate glutamatergic neurotransmission to 
CVNs. These results indicate that prenatal nicotine 
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exposure elicits an increase in the responses and 
alters the types of nicotinic receptors involved in the 
facilitation of glutamatergic neurotransmission to 
CVNs. As discussed above, CVNs are strongly modu-
lated by respiratory inputs originating from the me-
dulla, but the mechanisms by which central hypoxia 
and hypercapnia excite CVNs are unknown.

8.  A single episode of hypoxia does not 
elicit any change in glutamatergic 
inputs but intermittent episodes 
incrementally recruits an excitatory 
glutamatergic pathway to CVNs

To characterize the respiratory-related synaptic re-
sponses in CVNs, we have developed an in vitro 
preparation that allows us to characterize synaptic 
inputs to CVNs while simultaneously recording en-
dogenous rhythmic respiratory activity. In an initial 
operation, rats (2 days old) are anesthetized and the 
retrograde fluorescent tracer is applied to the termi-
nals of CVNs surrounding the heart. After 1–3 days 
recovery, the animals are re-anesthetized and sacri-
ficed by cervical dislocation. The brainstem is isolated 
and a transverse slice (600–800 µ thick) is obtained 
which generates spontaneous rhythmic respiratory 
activity. This preparation captures the pre-Botzinger 
complex, a region that is essential for the genera-
tion of the respiratory rhythm. Also contained within 
this preparation are the CVNs, identified by the 
retrograde fluorescent tracer, and the hypoglossal 
motor nucleus. Once the CVNs are identified, they 
are then imaged with differential interference con-
trast (DIC) optics, infrared illumination and cooled 
CCD cameras to gain better spatial resolution and 
to visually guide and position the patch pipette onto 
the surface of the identified neurons. The output of 
the hypoglossal neurons can be recorded as motor 
neuron population activity from rootlets of the XII 
nerve which are rhythmically active in inspiration 
and simultaneous with C4 spinal-phrenic nerve res-
piratory activity [95,96]. The inspira tory XII activity is 
also rectified, low pass filtered and integrated using 
an electronic filter (Paynter filter, time constant of 
25 msec) to better define the duration and magni-
tude of inspiration.

Under control conditions, there is no respiratory 
modulation of glutamatergic neurotransmission to 
CVNs. This indicates that respiratory sinus arrhyth-
mia, which is mainly due to decreased parasympa-
thetic cardiac vagal activity during inspiration, is 
most likely caused by inspiratory evoked inhibition, 
rather than post-inspiratory or expiratory evoked ex-
citation of CVNs. Similarly, single exposures to hyp-
oxia, of either 5 or 15 minutes’ duration, do not alter 
glutamatergic neurotransmission to CVNs.

However, intermittent episodes of hypoxia incre-
mentally recruit excitatory glutamatergic neurotrans-
mission to CVNs that occurs during respiratory bursts. 
During the second episode of hypoxia (Hypoxia 2), 
the frequency of glutamatergic neurotransmission 
to CVNs increased during the inspiratory bursts. 
The third exposure to hypoxia elicited a dramatic in-
crease in EPSC frequency in CVNs during inspiratory 
activity, Hypoxia 2 and 3.

9.  Prenatal exposure to nicotine 
exaggerates respiratory-related 
excitatory pathway to CVNs during 
both hypoxia and combined 
hypercapnia/hypoxia

The respiratory responses to hypoxia/hypercapnia in 
animals exposed to nicotine in the prenatal period 
closely mimicked and were not significantly different 
from the responses in unexposed animals. This is 
consistent with work from other investigators that 
have shown that the frequency and characteristics 
of the respiratory activity, and responses to hypoxia, 
were very similar if not indistinguishable between 
control and nicotine exposed animals [97]. Prenatal 
nicotine exposure did not alter the ventilatory re-
sponse to hypoxia or hypercapnia in rats from 3 to 
34 days old [98], and infants of smoking mothers did 
not have different ventilatory responses to hypoxia or 
hypercapnia, but these infants did have diminished 
arousal to hypoxia [99].

However, the responses in CVNs to hypoxia/hyper-
capnia are greatly exaggerated in prenatal nicotine 
exposed animals. A single episode of hypoxia/hyper-
capnia does not elicit an increase in excitatory neu-
rotransmission to CVNs in unexposed animals, but in 
animals exposed to nicotine in the prenatal period, a 
single period of hypoxia/hypercapnia recruits an ex-
citatory neurotransmission to CVNs. Similar results 
have been obtained in prenatal nicotine exposed 
animals with a single exposure to hypoxia.

These results strongly complement recent work 
that examined whether prenatal nicotine exposure 
alters inhibitory neurotransmission to CVNs during 
hypoxia. In unexposed animals, hypoxia evokes a 
biphasic change in the frequency of both inhibitory 
GABAergic and glycinergic synaptic events in CVNs, 
comprised of an initial increase followed by a de-
crease in IPSC frequency [3]. Prenatal exposure to 
nicotine changed the GABAergic response to hypoxia 
from a biphasic response to a precipitous decrease 
in spontaneous GABAergic IPSC frequency [3]. These 
results taken together would predict a much stronger 
excitation of CVNs during hypoxia and/or hypercap-
nia from animals exposed to nicotine in the prenatal 
period.
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10.  Nicotinic receptors responsible for 
facilitating this excitatory pathway

The mechanisms responsible for the altered responses 
with prenatal nicotine exposure likely involve altered 
glutamatergic neurotransmission within the central 
nervous system. Prenatal nicotine exposure has been 
shown previously to exaggerate the facilitation of 
glutamatergic neurotransmission to CVNs and also 
change the types of presynaptic and postsynaptic 
nicotinic receptors involved in exciting premotor 
CVNs [93]. Changes in the subtype, number and 
characteristics of the nicotinic receptors are likely in-
volved. Chronic nicotine exposure has been shown 
to decrease the number of low affinity and increase 
the number and fraction of high affinity nicotinic re-
ceptors [92]. The acetylcholine evoked ionic currents 
from these upregulated nicotinic receptors are aug-
mented twofold or more compared to control currents, 
and are less sensitive to desensitization [92]. In the 
presence of DHβE at a concentration which blocks 
all subtypes of nicotinic receptors (100 µM), hypoxia/
hypercapnia did not increase glutamatergic neuro-
transmission to CVNs during inspiratory activity.

11.  Tempol, a superoxide dismutase 
mimetic, abolishes recruitment of 
this excitatory neurotransmission in 
response to intermittent hypoxia

Episodic periods of hypoxia and hypercapnia evoke 
different cardiorespiratory responses than the re-
sponses to a single period of hypoxia or hypercap-
nia, despite equal total durations of exposure. For 
example, three or more 5-minute periods of hypoxia 
evokes respiratory long-term facilitation which is 
a long-lasting increase in ventilation or respiratory 
activity, whereas exposure to similar protocols of 
intermittent hyper capnia has been reported to elicit 
long-term depres sion [100,101]. One of the major 
differences between intermittent and continuous hyp-
oxia is that the episodic reoxygenation with intermit-
tent hypoxia increases generation of reactive oxygen 
species (ROS), especially oxygen free radicals [102].

ROS are generated by all mammalian cells as by-
products of metabolism or apoptotic signals and by 
some cells in response to noxious stimuli. In general, 
production of ROS is associated with deleterious 
effects in pathophysiologic conditions, including 
inflammatory responses, apoptosis, or ischemia/
reperfusion. For example, free radical production is 
associated with increased injury following intermittent 
fetal hypoxia–reoxygenation in fetuses of near-term 
pregnant rabbits [103]. Administration of antioxi-
dants resulted in less brain edema and cell death 
[103]. In a growing number of systems, however, 

generation of ROS is useful and even required by 
physiologic systems. For example, recent evidence 
suggests that ROS are involved in signaling by angi-
otensin II in central autonomic networks [104], and 
may be involved in the pathogenesis of hyperten-
sion and the activation of the sympathetic nervous 
system [105–107]. Superoxide anions in the rostral 
ventrolateral medulla are increased in stroke-prone 
spontaneously hypertensive rats and may contribute 
to the neural mechanisms of hypertension in these 
animals [108].

To examine whether the generation of ROS is in-
volved in the incremental recruitment of an excita-
tory pathway to CVNs during intermittent hypoxia, 
we included the cell-permeant superoxide dismutase 
mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl 
(tempol, 1 mM) in the perfusate. Addition of tempol 
prevented the recruitment of excitatory glutamater-
gic neurotransmission to CVNs that occur during 
respiratory bursts with intermittent hypoxia in the 
absence of tempol.

12.  One likely site of oxygen free radical 
production is the ventrolateral 
medulla

To localize the production of oxygen free radicals, 
we utilized a cell-permeant indicator, 5-(and-6)-chlo-
romethyl-2�,7�-dichlorodihydrofluorescein diacetate, 
acetyl ester (CM-H2DCFDA), for ROS which is color-
less and nonfluorescent until oxidized back to the 
fluorophore by ROS. The oxidant-sensing probe CM-
H2DCFDA is de-esterified within cells by endogenous 
esterases to the ionized free acid, 2�,7�-dichlorodi-
hydrofluorescein. 2�,7�-dichlorodihydrofluorescein is 
nonfluorescent until intracellular oxidation by oxygen 
free radicals produces the fluorescent 2�,7�-dichloro-
dihydrofluorescein (H2DCF). H2DCF is a standard and 
commonly used dye for measuring the generation of 
ROS and has been used previously to localize and 
examine the production of ROS in in vitro neuronal 
slices [109–111].

Brainstem slices were incubated in control arti-
ficial cerebral spinal fluid containing CM-H2DCFDA 
(10 µM) for 60 minutes to allow cellular esterases 
to hydrolyze the acetate group and render the dye 
responsive to oxidation. H2DCF fluorescence was 
measured throughout intermittent hypoxia using 
the same protocols as in electrophysiological experi-
ments and images were obtained every 10 seconds 
using excitation and emission wavelengths of 480 nm 
and 520 nm, respectively. Intermittent hypoxia incre-
mentally increased H2DCF fluorescence in individual 
neurons within the ventrolateral medulla. Tempol 
nearly completely blocked the increase in H2DCF 
fluorescence.
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13. Summary and future research

We have developed a novel brainstem preparation 
that spontaneously generates respiratory rhythms 
and responds to hypoxia and hypercapnia similarly 
to in vivo preparations in which we can examine the 
changes in synaptic activity in fluorescently identified 
CVNs during hypoxia, hypercapnia and combined hy-
poxia/hypercapnia. Our preliminary results indicate 
that while a single episode of hypoxia does not elicit 
any change in glutamatergic activity, intermittent epi-
sodes of hypoxia incrementally recruits an excitatory 
glutamatergic neurotransmission to CVNs that occurs 
during respiratory bursts. Prenatal nicotine exposure 
augments the excitatory pathway evoked by hypoxia 
and combined hypoxia/hypercapnia, and furthermore 
nicotinic receptors are involved in facilitating this ex-
citatory pathway. The recruitment of this excitatory 
pathway to CVNs likely involves generation of ROS 
since tempol, a superoxide dismutase mimetic, abol-
ishes the recruitment of this excitatory neurotrans-
mission in response to hypoxia. Localization of the 
production of oxygen free radicals using probes that 
become fluorescent when oxidized by oxygen free 
radicals indicate that one site of oxygen free radical 
production are neurons in the ventrolateral medulla.
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