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Bone marrow transplantation and organ transplantation studies suggest
that bone marrow cells can differentiate into a variety of non-hematological
tissues, including renal cells. The results of a number of experimental
animal studies also showed that cell therapy (bone marrow cells (BMCs),
hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs)) might
have the potential to rescue animals from organ injuries. However, when
BMCs or HSCs were injected into rodents subjected to ischemic or toxin-
induced acute tubular necrosis (ATN), the results with regard to whether
they could rescue rodents from ATN were inconsistent. The reasons for the
conflicting results of BMC or HSC therapy in ATN are unknown, but may be
due to the different types of cells injected, number of cells injected, route
of injection, or injury model of acute renal failure. It is known that MSCs
can contribute to renal tubular regeneration after ATN, although the exact
mechanism, either transdifferentiation or effects of paracrine/cytokines, is
uncertain. In the future, the most pertinent issue is to determine how MSCs
protect the renal tubule from injury, and then to imitate this protective or
reparative effect pharmacologically. (Tzu Chi Med J 2007;19(3):115-126)
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1. Introduction

dialysis). Although there is no universal laboratory
definition, it is reasonable to define ARF as a rise in

Acute renal failure (ARF) is defined as a rapid decline
in glomerular filtration rate (GFR) occurring within
hours or days, resulting in the failure of the kidney to
excrete nitrogen waste products, and failure to main-
tain extracellular fluid volume, electrolyte and acid-
base homeostasis (1-4). Definitions of ARF range from
a slight rise in serum creatinine concentration (e.g.
of 0.5mg/dL) to severe ARF status (i.e. that requiring

serum creatinine levels for 2 weeks or less of 0.5mg/dL
(44.2 umol/L) if the baseline is less than 2.5mg/dL,
or arise in serum creatinine levels by more than 20%
if the baseline is more than 2.5mg/dL (4).

ARF may occur in three clinical settings: (1) as a
result of severe volume depletion and hypotension
without compromising the integrity of renal paren-
chyma (prerenal ARF); (2) obstruction to the urinary
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tract (postrenal ARF); and (3) diseases that directly
affect renal parenchyma (intrinsic renal ARF). Prerenal
ARF can be corrected if the extrarenal factors caus-
ing the renal hypoperfusion are reversed. In addi-
tion, an obstructive cause of ARF must be excluded
because prompt intervention can lead to improve-
ment or complete recovery of renal function. Acute
tubular necrosis (ATN), resulting from prolonged
renal hypoperfusion and renal ischemia or nephro-
toxic substances, is a pathological diagnosis. Patho-
physiologically, ATN is associated with tubular cell
death and shedding into the tubular lumen, result-
ing in tubular blockage, further reducing glomerular
filtration. Despite major advances in intensive care,
renal replacement therapy, and exploration of cellular
and molecular pathogenesis of ARF, no specific ther-
apy is currently available. Consequently, the overall
mortality rate of patients with ARF is still high, about
50% in a recent series (3,5,6), and has changed little
during the past 30 years. Therefore, a more powerful
therapeutic intervention for ATN to decrease mortal-
ity rate is imperative. Recently, a number of studies
have provided evidence that bone marrow stem cells
(BMSCs) may have a great potential to rescue people
from organ injury. Here, we introduce the present
studies on BMSCs in patients with renal diseases and
discuss the future direction for applying BMSCs to
renal regeneration.

2. Stem cells
2.1. Totipotent, pluripotent and
multipotent

A stem cell is defined as a cell from the embryo,
fetus, or adult that is capable of self-renewal over
long periods and differentiation to one or more types
of specialized cells under certain conditions (7).
Competent levels of stem cells can be classified as
either totipotent (able to contribute to all three embry-
onic germ layers as well as extraembryonic tissues),
pluripotent (giving rise to all three germ layers of the
embryo), or multipotent (with the potential to differ-
entiate into multiple cell types, but not derivatives of
all three germ layers).

2.2. Embryonic stem cells

Embryonic stem (ES) cells are derived from the inner
cell masses of the blastocysts and are pluripotent (8).
The pluripotent character of ES cells may provide ther-
apeutic potential for many disorders. However, there
are still several issues remaining unresolved about
using ES cells from human embryos and applying
them to clinical applications, including uncontrolled

growth of inappropriate tissue types, rejection com-
plications, and ethical issues.

2.3. Adult stem cells

In adult organisms, each tissue and organ are believed
to contain a small subpopulation of cells, i.e. tissue-
specific stem cells that remain committed to support
their own family of descendants. Hematopoietic stem
cells (HSCs) are the best characterized; this knowledge
has allowed therapeutic grafting to make a tremen-
dous impact on hematological malignancy and offers
great promise for hemoglobinopathies and other
denetic diseases (9). A recent study showed in vitro
expanded renal-derived CD133" cells homed into the
injured kidney and integrated into tubules. However,
it cannot be excluded that these CD133" cells might
have been contaminated fromthe blood of renal micro-
circulation because these cells were directly obtained
from the cortex without pre-infusion with isotonic
sodium chloride solution (10). Therefore, do renal
stem cells exist in the adult kidneys? Most researchers
agree that the kidney should contain organ-specific
stem cells like other adult organs, but no researchers
claim they can recognize functional renal stem cells
either by location or by characteristic morphology or
surface molecule expression (11,12).

3. BMSCs and their therapeutic
potential

3.1. Plasticity of BMSCs

BMSCs are a many-faceted population and have been
classified as HSCs, marrow stromal cells (or MSCs),
multipotent adult progenitor cells (MAPCs), and side
population (SP) cells (13). Bone marrow transplanta-
tion (BMT) is an existing mode of stem cell therapy
for patients with blood disorders such as leukemia.
More than four decades of accomplished in vivo BMT
studies have clarified the activities of a rare BMSC
that is both self-renewing and multipotent in its ability
to give rise to all blood cell types and provide recipi-
ents with long-term repopulating cells (9). Traditionally,
adult stem cells were believed to be lineage-restricted
and organ-specific. Therefore, it was not thought pos-
sible that stem cells derived from bone marrow could
not only rescue patients with hematological disorders
but also extricate non-hematopoietic tissues from
ordan damage, i.e. the existence of stem cell plasti-
city had not been recognized. The first significant
report alerting to the possibility of stem cell plasticity
was published by Ferrari et al (14) who transplanted
bone marrow cells (BMCs) into recipient mice and
subsequently injured the muscles of these recipient
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animals. Surprisingly, donor cell nuclei were found
incorporated into the regenerated skeletal muscle at
a frequency of approximately 0.01%. Now, a growing
number of studies based on simple BMT protocols
have claimed that adult BMSCs can differentiate into
a variety of non-hematological tissues in rodents, such
as skeletal muscle (14), astrocytes (15), osteoblasts
(16), endothelial cells (17), cardiomyocytes (18), neu-
ronal cells (19,20), hepatocytes (21), epidermal cells
(22), pneumocytes (22,23), renal tubular epithelium
and podocytes (24), and gut cells (22,25). Likewise, in
humans, bone marrow can apparently differentiate
into hepatocytes (26,27), renal tubular cells (24), epi-
thelium of the skin (27), skeletal muscle (28), cardio-
myocytes (29), epithelia of gastrointestinal tract (27,
30), respiratory tract (31), and neurons (32,33).

3.2. Cell fusion between BMCs and
differentiated cells in engrafted

organs

Although some researchers have questioned stem
cell plasticity and showed this is really the result of
the fusion of BMCs with the differentiated cells in
the engrafted organ including hepatocytes (34-36),
Purkinje cells (36,37), cardiomyocytes (36) and skel-
etal muscle cells (38,39), a number of studies have
demonstrated that cell fusion is not a major player in
the transdifferentiation of BMCs into various specific
cell types (reviewed in (40,41)).

4. Therapeutic potential of BMCs for
extrarenal diseases

Through the establishment of bone marrow chimer-
ism, a few successful cases of HSC transplantation
in utero have rescued patients with severe com-
bined immunodeficiency disease, B-thalassemia, and
Bloom’s syndrome (42,43). Moreover, the results of a
series of studies have shown the possibility that bone
marrow grafting could act as cell therapy for non-
hematological diseases, such as osteogenesis imper-
fecta (44-46). Horwitz et al (44) showed that BMT
improved certain parameters of patients with osteo-
denesis imperfecta, and stromal cell cultures from
biopsies of recipient bones indicated that donor-
derived cells were present. A subsequent study
showed that further administration of mesenchymal
cells cultured from the same donor gave some fur-
ther improvement of clinical parameters due to the
formation of functional wild-type osteoblasts from
the donor mesenchymal cells, although gene-marked
cells when detectable were < 1% of cells in bone cul-
tures (46). Recently, experimental and early clinical
studies have supported the concept that autologous

bone marrow infusions were beneficial in chronic
limb ischemia (47), ischemic heart disease (48), and
myocardial infarction (49,50) in humans, although
the benefits appeared to be related to preserving or
re-establishing microvessels and limiting the extent
and severity of the damage (51).

4.1. Engraftment of BMCs as renal cells
Table 1 (22,24,52-78) shows the potential of BMCs to
transdifferentiate into renal cells according to the study
results of cross-sex BMT and kidney transplantation.

4.2. Engraftment of BMCs as renal

vessels and interstitium

Considering the renal vessels and interstitium, the
results of early studies of renal vascular engraftment
by Williams et al (52,53) and Sinclair (54) showed,
based on cross-sex renal transplant studies, that
repopulated endothelium of vessels may be derived
from circulating cells when chronic rejection of allo-
grafts occurred. Williams et al reported that 10% of
the endothelium in allografts of the Kidney and aorta
could be from the host marrow when chronic rejec-
tion of allografts occurred, and engraftment was less
when rejection was attenuated by immunosuppres-
sion (52,53). Sinclair (54) counted Barr bodies in 40
male patients with female renal transplants and showed
donor endothelium persisted in 37 of 40 cases, but not
in three patients with grafts that were very poorly func-
tioning and severely damaged. However, Andersen
et al (55) examined kidney specimens from 40 sex-
mismatched transplant patients clinically suggested of
developing acute rejection, and reported that there
was no evidence of revascularization by recipient
endothelial cells; furthermore, tubular and glomeru-
lar cells remained of donor origin in the transplanted
Kidneys with acute rejection, even 10 months after
transplantation. Recently, the results of two studies
showed that vascular endothelium (58,61) and tubu-
lointerstitial cells (58) were of host origin when allo-
grafts of human kidneys show chronic rejection. The
percentage of engraftment of vascular endothelium of
host origin was more than 33% in the majority of
patients (86%) with vascular rejection (58,61). Simi-
larly, the percentage of vascular endothelium of host
origin was 34-76% in allografts with vascular rejec-
tion, and the percentage of interstitial cells of host
origin was 30-77% in allografts with interstitial rejec-
tion (58). These results suggest circulating mesen-
chymal precursors reside within the bone marrow
and migrate to vessels or interstitial areas when allo-
graft rejection occurs. However, the results from a
study by Iwano et al showed that interstitial kidney
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1-28d after I/R
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Yokoo et al
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fibroblasts were derived not only from bone marrow
but also from local tubular epithelium (64).

4.3. Engraftment of BMCs as glomerular

mesangial cells and podocytes

Turning to glomerular mesangial cells and podocytes,
Poulsom et al and Sugimoto et al demonstrated that
BMCs contributed to podocyte regeneration and ame-
lioration of renal disease in a mouse model of Alport
syndrome (24,77,79). Regarding mesangial cells,
Cornacchia et al demonstrated that mesangial cell pro-
dgenitors may carry a disease genotype and that the
phenotype can be transmitted after BMT (57). Several
studies also showed that BMCs differentiated into
glomerular mesangial cells in rodents with and without
glomerular injury (59,60,63,68,78). Moreover, Masuya
et al reported that transplantation of a single HSC could
dgenerate numerous glomerular mesangial cells (67).

4.4. Engraftment of BMCs as renal tubular
epithelium

Considering renal tubular epithelium, Poulsom et al
demonstrated that BMSCs contributed to both normal
turnover of renal epithelium in mice and the level
of engraftment in renal tubular cells was 3-8%, and
regeneration after damage in humans where the level
of engraftment in renal tubular cells was 1.8-20%
(24). Animal studies from our group and other groups
also showed that BMCs contributed to renal regener-
ation after ATN (70,71). However, not all reports were
compatible with these studies. Krause et al showed
that no donor-derived renal tubule epithelial cells were
seen in any of the five mice transplanted with a single
highly selected HSC, perhaps ineffective due to the
use of a sorted HSC rather than the whole bone mar-
row (22). However, it is unknown whether epithelial
chimerism is an incidental by-product of cross-gender
BMT and renal allografts without biological meaning
or whether alternatively the process plays a role in kid-
ney repair. For example, Gupta et al reported that 1%
of tubules contained male epithelial cells in two male
patients with female Kidney allografts and ATN, how-
ever, no male epithelial cells were noted in two cases
without ATN, suggesting that recipient-derived cells
do not routinely repopulate the transplanted kidney
(62,80). These findings contrast with recent observa-
tions by Mengel et al who showed that chimeric tubu-
lar epithelial cells (2.4-6.6%) occurred regularly in
allografts, and was not correlated with outcome (69).
The results of our recent study demonstrated that
BMCs contributed to the renal tubular epithelial cell
population and regenerated renal tubular epithelium
after ARF via cell proliferation (70).
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5. Therapeutic potential of BMC
therapy for ATN

Table 2 (66,73,81-88) shows the conflicting results
of BMC therapy for acute renal injury. The reasons for
the conflicting results of BMC therapy in acute renal
injury are unknown, but may be due to the different
types of injected cells, number of injected cells, route
of injection, or injury model of ARF.

5.1. Whole BMC therapy for ATN

It is still conflicting whether whole BMCs can con-
tribute to tubular regeneration after ATN (66,85). For
example, Kale et al demonstrated that the engraft-
ment of renal tubular cells of the outer medulla from
BMCs increased from 3.0 £ 0.1% to 20.9 + 1.6% after
ischemia-reperfusion (I/R) renal injury (66), suggest-
ing a major contribution of BMCs to functional repair of
the ischemically injured tubule. However, the results
of another study showed that BMCs did not improve
renal function after I/R renal injury, although a rise
in engraftment of tubular epithelial cells, glomerular
cells and interstitial cells was seen (85).

5.2. HSC therapy for ATN

With regard to HSC therapy for ATN, it is still uncertain.
For example, Lin et al studied female non-transgenic
mice subjected to 11 Gray y-irradiation 2 hours before
the left renal artery was clamped for 15 minutes,
and 2000 Rh'°Lin"Sca-1*ckit* HSCs from male ROSA26
mice were injected into the female mice within hours
after the unilateral renal I/R injury (81). Four weeks
after I/R renal injury, HSC-derived tubular epithelium
was seen only with ischemic damage, and the percent-
age of Y chromosome-positive cells in the regenerating
renal proximal tubules was 8.3+3.2%. However, Dekel
et al showed that human BM CD34* HSCs when injec-
ted into NOD/SCID mice subjected to I/R renal injury via
renal pelvis could not improve renal function and these
cells could not acquire a tubular phenotype (87).

5.3. MSC therapy for ATN

With regard to MSC therapy for ATN, it is established
that MSCs can contribute to regeneration of renal
tubules after ATN, although the exact mechanism is
controversial. There are at least two possible mecha-
nisms for MSCs to rescue ATN: transdifferentiation
of MSCs into renal tubule cells and paracrine and/
or angiogenic effects of MSCs. However, it is not
Known which one is more important. For example, two
studies demonstrated that MSCs, when injected into

non-irradiated mice subjected to cisplatin-induced
or glycerol-induced ATN, could rescue mice from
acute tubular damage and differentiate into renal
tubular epithelium (82,83). However, the results
of other studies showed that the administration of
MSCs via carotid artery either immediately or 24
hours after renal ischemia (73,84,86) or via either
tail veins or left renal artery 1 day after anti-Thyl.1
nephritis induction (88), significantly improved renal
function through a change in the cytokine milieu or
paracrine growth factor release, but not because of
their transdifferentiation into renal tubular cells. The
reason for the discrepant results of MSC transdiffer-
entiation into renal epithelial cells between these
two Kinds of studies is unclear.

In fact, MSCs not only release angiogenic (vascular
endothelial growth factor) and anti-inflammatory
cytokines (transforming growth factor 1), but MSCs
also have strong immunosuppressive activity (89).
However, it is still conflicting if administration of
MSCs to people subjected to ATN can develop a
neo-expressing protein and may induce an immune
response. For example, several studies demonstrated
that MSCs had shown strong immunosuppressive
activity (89), and modulated the immune response
via modifying the cytokine response of dendritic cells
and T cells, via interfering with the development of
immunocompetent dendritic cells, and via favoring
the development of regulatory T cells (90,91). In con-
trast, one recent study showed that the administra-
tion of allogeneic donor MSCs primed naive T cells
and hastened rejection of the bone marrow, whereas
recipient autologous MSCs promoted tolerance and
acceptance of transplants (92).

6. Conclusion

Studies of tissue from recipients of BMT or organ
allografts suggest that BMCs can differentiate into a
variety of non-hematological tissues, including renal
cells. However, it is uncertain whether BMCs or HSCs,
when injected into rodents subjected to ischemic or
toxin-induced ATN, could rescue rodents from ATN.
The reasons for the conflicting results of BMC or HSC
therapy in ATN are unknown, but may be dependent
on the different types of injected cells, number of
injected cells, route of injection, or injury model of
ARF. MSCs could contribute to renal tubular regenera-
tion after ATN, although the exact mechanism, either
transdifferentiation of MSCs or effects of paracrine/
cytokines, is uncertain. In the future, the most perti-
nent issue is to determine exactly how MSCs protect
the renal tubule from injury, and then to imitate this
protective or reparative effect pharmacologically. If the
primary role of MSCs is to secrete a cytokine or growth
factor in response to injury, then the cells themselves
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might not be essential, and we should be able to rec-
ognize the factor or factors and either administer it
directly or establish pharmacological policy to stimu-
late its production by endogenous cells.
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