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a b s t r a c t

Prenatal cigarette smoking exposure is not an uncommon phenomenon despite adverse publicity
emphasizing its dangers. As nicotine stimulates nicotinic acetylcholine receptors, it is believed that this
may disrupt the maturation of the developing brain. Several lines of evidence have accumulated to
indicate that tobacco-related neurobehavioral impacts are by no means negligible. From human studies,
various neuropsychiatric domains, including infant temperament, attention, externalizing behaviors, and
higher cortical functions, have been examined. Although most studies have come out against smoking
during pregnancy, a few studies have pointed to the fact that the epiphenomenon of smoking, rather
than nicotine itself, is actually responsible for the neurobehavioral deficits or problems. Different
genotypes among various candidate genes, including DAT1, DRD4, MAOA, COMT and GSTM-1, have been
reported to interact with smoking to cause an adverse behavioral profile. Epigenetic approaches have
also been initiated that carry us beyond the realm of genotype associations. Finally, animal studies have
identified various direct neuroteratogenic effects in different regions of the developing animal brain,
including neuron loss, acetylcholine receptor upregulation, diminished acetylcholinergic tone, dysre-
gulated catecholaminergic tone, and altered intracellular signaling pathways. Notwithstanding the fact
that the toxic effect that prenatal cigarette smoking exposure appears to have on neurodevelopment,
there remains much to learn. Further and improved studies across all fields are encouraged in order to
form a complete picture of nicotine as a teratogen, and it is hoped that this will emerge in the near
future.
Copyright � 2012, Buddhist Compassion Relief Tzu Chi Foundation. Published by Elsevier Taiwan LLC. All

rights reserved.
1. Introduction

Tobacco is the most abused drug in the world [1], but its impact
on prenatal, perinatal and postnatal health is not yet fully under-
stood [2]. Some reports have indicated that more young pregnant
women are engaging in smoking in western society [3]. In fact, at
least 12e15% of women do smoke during their gestational period
[4,5]. Nicotine crosses the placenta readily and is concentrated in
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the fetal blood, where it has potentially disruptive effects on the
developing brain via nicotinic acetylcholine receptor (nAChR)
activation [2,6]. Among the known postnatal outcomes, one of the
most highlighted domains is neurobehavioral [7,8]. For example,
the team from Brown Medical School used NICU Network Neuro-
behavioral Scale (NNNS) to test nicotine-exposed neonates (n¼ 27)
and unexposed controls (n ¼ 29) [9]. After adjusting for socioeco-
nomic background and other substance use, the exposed group of
neonates showed more excitability, required more handling, and
presented with more neurological and visual symptoms. Using
a similar methodology, they tested infants aged 10e27 days [10].
Again the nicotine-exposed infants (n ¼ 28) needed more handling
and had poorer self-regulation than their controls (n ¼ 28). As
infants grow into their childhood and adolescence, the subtle
Foundation. Published by Elsevier Taiwan LLC. All rights reserved.
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neurobehavioral deficits seem to turn into overt psychopathology
that manifests as learning difficulties, social deficits, violence and
aggression [11e16].

Despite the growing evidence concerning smoking and neuro-
behavioral symptoms, it is still difficult to attribute the behavioral
phenotypes to smoking itself [5,17e19]. As a maladaptive behavior,
smoking is linked with lower social status, poverty, malnutrition,
presence of toxins and stress, maternal personality/psychopa-
thology, neighborhood environment, and other substance use. In
other words, smoking is correlational to externalizing behaviors
rather than being absolutely causal. As such, the so-called smoking
effect may be spurious and the other factors related to smoking
actually cause the adverse neurobehavioral outcomes. By contrast,
some research has explored geneeenvironment interactions in this
area by focusing on statistical interactions between smoking and
specific genotypes. Several major findings in this area are reviewed
below.

Theoretically, research concerning the impact of prenatal
substance exposure on fetal development is largely based upon the
premise of prenatal programming effect; this posits that prenatal
exposure leads to long-term and pervasive negative outcomes
across the whole lifespan [20]. Under such a premise, animal
models are perfect for inspecting potential adverse outcomes
[7,21,22]. Experimental animals can be exposed to simulated doses
of a teratogen. Given that all environmental variables are well
controlled in a laboratory setting, any observed neurobehavioral
effects should be the direct consequence of the toxic effect of the
substance. Using an animal model, it is also feasible to explore the
underlying molecular or receptor mechanisms responsible for any
nicotine-related developmental defects [23e34]. In this review, we
summarize some interesting observations elicited in this type of
preclinical study.

2. Smoking and its effect on human neurobehavioral
outcomes

Human studies are mostly epidemiological in nature because
the participants cannot be administered with nicotine, unlike
experimental animals [5,18,19]. In retrospective studies such as
caseecontrol studies, recall bias can have a tremendous effect,
especially when the offspring have some perinatal problems.
Therefore, the best approach when carrying out prenatal cigarette
smoke exposure (PCSE) (or prenatal nicotine exposure) studies is to
follow at-risk pregnant women prospectively [8]. To validate
maternal reporting, biological sampling of urine cotinine levels is
helpful [8]. When the behavioral testing is virtually real-time with
the biological sampling, some sort of doseeresponse relationship
(between PCSE and behavior symptom severity) may be revealed
[35]. However, for an epidemiological report to be valid, numerous
covariates have to be controlled in order to disentangle the
compound effects statistically from the demographic background,
maternal personality, maternal psychological status, paternal
characteristics, other substance use, perinatal complications, and
environmental factors [5,18,19,36].

From neonates to infants, children and finally adolescents,
different outcomes have been used to delineate PCSE neuro-
behavioral effects [35e39]. In infant populations, virtually no
complex assessments are used because of potential harm and the
limited responses available to many tests. Except for event-related
potentials or electroencephalographymeasurements, basically only
crude behavioral phenotypes can be explored [35,40]. As infants
grow and develop with time, they can be tested using not only
behavior check lists but also brain imaging [41,42], as well as
complex cognitive functions like intelligence quotient (IQ) [43,44].
In summary, in most studies, PCSE infants, children and adolescents
appear inferior to their nonexposed controls. For instance, greater
irritability and hypertonicity [45], a less easy temperament [37],
less focused attention and auditory responses [46], more exter-
nalizing and internalizing symptoms [47], lower language
comprehension [48], lower IQ [43,44], greater reductions in cortical
gray matter, total parenchymal volume and head circumference
[41], and thinner orbitofrontal andmiddle frontal cortices [42] have
been found in PCSE offspring.

Harmful as smoking may seem, it is hard to conclude that
nicotine is the culprit causing all the adverse outcomes because
many of these studies involved volunteer participants who had not
had their backgrounds controlled in a detailed manner [5,17e19].
Even in well-controlled or statistically adjusted studies, residual
confounding factors remain. For instance, in a cohort of over 18,000
9-month-old infants, the mothers who quit smoking during preg-
nancy tended to have offspring who scored higher on the easy
temperament scale [37]. This observation still held true after many
factors related to maternal smoking status were adjusted. At first
glance, if quitters were psychosocially comparable to smoking
mothers, and quitters delivered healthier (in this case, easier
temperament) babies, then nicotine would certainly seem to have
direct teratogenic effects on the developing fetuses. However, the
real story may not be so straightforward. Mothers who quit
smoking during pregnancy may be inherently different from
mothers who do not quit [39]. This could be due to underlying
maternal personality differences or to genetic differences between
the two groups, and it is these that contribute to both the mother’s
success in quitting smoking and to the baby’s easy temperament
[49]. Furthermore, a 9-month-old infant may have been exposed to
significant amounts of environmental tobacco smoke (ETS) after
birth, especially from a smoking mother or father [50,51]. Along
with ETS, postnatal environmental factors are extremely difficult to
control. Even though researchers are enthusiastic about proving the
long-term effects of PCSE on children, adolescents and even adults,
it is important to bear in mind that environmental factors are
bound to come into play that are able to confound the effects of
PCSE in an insidious way.

3. Human genetics and environmental interactions

To bypass the innumerable phenotypic or psychosocial cova-
riates associated with humans, many of which are highly unstable,
some investigators have targeted the relationship between various
genetic polymorphisms and the effects of PCSE. Intuitively, nAChRs
ought to play some sort of role in fetal neuroteratogenicity.
However, nAChRs that are ubiquitously expressed in the brain
consist of various different subunits and serve many functions
during the brain maturation process [2,52]. Thus, it is by no means
easy to target any specific behavioral phenotype and its relation-
ship with a certain nAChR genotype [53].

Conventionally, researchers have chosen specific candidate
genes that are believed to be related to externalizing problems. For
instance, dopamine and serotonergic pathways are believed to be
involved in motivation and inhibitory control [54e56]. Dopamine
transporter gene DAT1 and dopamine receptor gene DRD4 have
been found to be correlated with attention-deficit hyperactivity
disorder (ADHD); however, the results concerning DAT1 and DRD4
interacting with smoking and ADHD remain inconclusive. Mono-
amine oxidases (MAOs) are a group of metabolic enzymes acting on
monoamines that are coded by genes on the X chromosome [52].
Functionally, MAOA is associated with the modulation of seroto-
nergic tone and morphogenesis. Phenotypically, MAOA knockout
mice display aggressive behaviors that mimic human externalizing
disorders. Interestingly in this context, some of the more than 4000
non-nicotinic components in tobacco smoke are suspected of being
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able to inhibit MAOs. One study has shown that male infants with
PCS exposurewith low activity of MAOA 50 have an increased risk of
conduct disorder symptoms [57]. The polymorphisms affecting the
genes encoding another important metabolic enzyme, catechol-O-
methyl transferase, have also been extensively studied. According
to a recent study, the catechol-O-methyl transferase Val108/158Met
polymorphism (rs4680) interacts with maternal smoking during
pregnancy, and this predicts aggressive behavior in offspring aged
15e20 years old [58].

In contrast to the above, other investigators have focused on
enzymes involved in metabolizing tobacco smoke and have tried
linking polymorphism in these genes to externalizing behaviors or
cognitive functioning [59e63]. For instance,Morales et al have found
that glutathione-S-transferase Mu 1 deficiency increases the cogni-
tive deficits of preschoolers who have been subjected to PCSE, indi-
cating that inadequate detoxification in fetusesmaycause harm [63].

There are epigenetic models for fetal alcohol spectrum disorder
and therefore there should be similarmodels for PCSE teratogenesis
[64]. Epigenetic reprogramming occurs during peri-implantation
(genome-wide demethylation), gastrulation (de novo methylation)
and at later stages (genome-wide de novo methylation and deme-
thylation at both imprinted and nonimprinted loci) [65]. Toledo-
Rodriguez has proposed that mechanisms associated with PCSE
may include DNA methylation in genes important for brain devel-
opment [66]. Their research findings have suggested that PCSE may
cause long-term downregulation of brain-derived neurotrophic
factor expression through DNA methylation of its promoter region.
Other epigenetic mechanisms, such as noncoding RNAs, may also
contribute to nicotine-related neuroteratogenicity [67].

4. Basic science research for nicotine as a neuroteratogen

Slotkin has developed an animal model to study nicotine neu-
roteratogenicity [26e32,68]. Although birds, rodents, or monkeys
will never be able to capture fully all aspects of human smoking, the
pure effect of nicotine on a fetus can never be elicited without using
an animal model. Nicotine, on the one hand, may cause intermit-
tent hypoxiaeischemia episodes in the mother and fetus. On the
other hand, the dietary restrictions caused by the anorexic effects of
nicotine on the mother may also confound the direct effects of
nicotine, not to mention the plethora of epiphenomena that
circumscribe smoking behaviors.

There are several lines of research that have targeted the
prenatal or perinatal effects of nicotine on the developing brain.
First, brain cell loss (or suppression of DNA synthesis) has been
measured using regional DNA content. In this situation, neurons
usually continue to decline postpartum beyond the schedule of
nicotine administration. Even though DNA content eventually
recovers in some brain regions, neurogenesis usually stops before
this, meaning that neurons are being substantially replaced by glial
tissue [2,27,32]. Second, cholinergic synaptic function has been
measured. This is a trophic factor in the brain and therefore
cholinergic function is of prime importance to brain morphogen-
esis. Fetal nicotine exposure mostly upregulates nAChRs, but the
peak of developmental cholinergic tone seems to be blunted
[28,65]. Lasting deficits in choline transporter expression have also
been observed [69]. Third, catecholaminergic function has been
measured because of its dual relationship with both nAChRs and
behavioral problems. Although temporary regulation of receptor
subtypes might differ, persistent deficits in noradrenergic and
dopaminergic functions have been consistently reported [65,68].
Ironically, prenatal nicotine exposure does not seem to be able to
stimulate catecholamine release after birth [25]. Other than ace-
tylcholinergic or catecholaminergic mechanisms, upregulation of
adenylate cyclase expression [2], increased excitatory postsynaptic
potentials (EPSPs) mediated by N-methyl-D-aspartic acid receptors
in auditory cortex [23], decreased EPSPs mediated by 2-amino-3-
(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) receptors
in hippocampus [33], and decreased lipid peroxidation [30] have all
been reported in the context of prenatal or perinatal nicotine
exposure.

Basic scientists generally agree that prenatal nicotine has
a harmful effect on the developing animal brain. However strong
this evidence is, it is not completely transferable to human studies
because of the innate limitations of animal studies. These include
the facts that the trimester stages in human gestation are different
to the various stages of fetal rat development; rats and humans are
pharmacodynamically different, with the former generally
requiring a proportionately higher nicotine dose; and nicotine is
administered to rats via an infusionminipump rather than by active
inhalation [2].

5. Summary and future research

Human observational studies have immediate relevance to
decisions on policy, but the contextual and individual confounders
that usually affect their conclusions make them hard to accept.
With so many psychosocial variables to be adjusted for, the sample
size needs to be sufficient, which is very large even in a prospective
cohort. In this context, researchers try their best to collect covariate
information; nevertheless, no single study is able to cover all
aspects of this problem given the sample size limitation. As such,
only the most important variables are collected and adjusted for.
One way to consider the compound impact of all the relevant
covariates is to use propensity score analysis. The technique is
especially useful because it increases the statistical efficiency of
a not-so-large cohort. Although most published papers seem to
embrace the theory that nicotine is a neuroteratogen, some
researchers have obtained contrary findings [4,70,71]. Statistical
adjustment can never be exhaustive, therefore, it can always be
argued that the association between PCSE and neurobehavioral
symptoms is spurious. In these circumstances, trimester-specific
smoking data are need because they could help to document the
presence of any precise temporal effects. By contrast, the simple
causality theory needs to be modified to accommodate controver-
sial findings. For instance, Boutwell has proposed that PCSE is
related to childhood externalizing problems only in the mothers
who smoked more than one pack a day during pregnancy.

When using experimental designs that investigate geneeenvi-
ronment interactions, only selective candidate genes have been
tested for any association. To the best of our knowledge, no
genome-wide scan of human genes has been applied in this field.
Epigenetic hypotheses need to be tested more extensively because
these will deepen our understanding of tobacco-induced
epigenetic changes. To theorize boldly, smoking per se (not neces-
sarily in conjunctionwith pregnancy, breastfeeding, or ETS) may be
hazardous enough to alter the epigenetic information in gametes.

Animal studies are indispensable and are able to illuminate
theories on the effect of PCSE on neurobehavior. Their use is limited
by inaccurate quantitative assessments of exposure and timing
[7,21,22,72,73]. According to the work series by Slotkin et al [26e
32,68], studies are moving from the areas of DNA content, AChR
responsiveness, acetylcholinergic tone, catecholaminergic
responses, and intracellular secondary messengers towards the
intricate interconnections of all these items. Impressive as their
work is, it is merely the tip of the iceberg. For example, just in terms
of neurotransmitter theory, it is important to realize that the glu-
taminergic and GABAergic pathways are also important.

At this point, even though we cannot be certain enough to
announce that smoking during pregnancy is definitely detrimental
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to fetal neurodevelopment as a whole (depending on the timing
and severity), nobody should be opposed to the notion that tobacco
is a potential neuroteratogen. Given the large amounts of evidence
from observational, clinical and preclinical studies, it is important
that the long-lasting neurobehavioral impacts of prenatal tobacco
exposure are not overlooked. However, it is important to realize
that there is much about which we are still uncertain and even
totally ignorant. Well-designed as well as novel studies in all fields
will help to increase dramatically out knowledge base related to
tobacco-related neuroteratogenicity.
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